OCR MEI FP2 2010 June — Question 4

Exam BoardOCR MEI
ModuleFP2 (Further Pure Mathematics 2)
Year2010
SessionJune
TopicHyperbolic functions

4
  1. Prove, using exponential functions, that $$\sinh 2 x = 2 \sinh x \cosh x$$ Differentiate this result to obtain a formula for \(\cosh 2 x\).
  2. Sketch the curve with equation \(y = \cosh x - 1\). The region bounded by this curve, the \(x\)-axis, and the line \(x = 2\) is rotated through \(2 \pi\) radians about the \(x\)-axis. Find, correct to 3 decimal places, the volume generated. (You must show your working; numerical integration by calculator will receive no credit.)
  3. Show that the curve with equation $$y = \cosh 2 x + \sinh x$$ has exactly one stationary point.
    Determine, in exact logarithmic form, the \(x\)-coordinate of the stationary point.