A-Level Maths
Courses
Papers
Questions
Search
Courses
LFM Pure
Reciprocal Trig & Identities
Q7
CAIE P1 2019 November — Question 7
Exam Board
CAIE
Module
P1 (Pure Mathematics 1)
Year
2019
Session
November
Topic
Reciprocal Trig & Identities
7
Show that the equation \(3 \cos ^ { 4 } \theta + 4 \sin ^ { 2 } \theta - 3 = 0\) can be expressed as \(3 x ^ { 2 } - 4 x + 1 = 0\), where \(x = \cos ^ { 2 } \theta\).
Hence solve the equation \(3 \cos ^ { 4 } \theta + 4 \sin ^ { 2 } \theta - 3 = 0\) for \(0 ^ { \circ } \leqslant \theta \leqslant 180 ^ { \circ }\).
This paper
(11 questions)
View full paper
Q1
Q2
Q3
Q4
Q5
Q6
Q7
Q8
Q9
Q10
Q11