CAIE P1 2019 November — Question 9

Exam BoardCAIE
ModuleP1 (Pure Mathematics 1)
Year2019
SessionNovember
TopicComposite & Inverse Functions

9 Functions f and g are defined by $$\begin{aligned} & \mathrm { f } ( x ) = 2 x ^ { 2 } + 8 x + 1 \quad \text { for } x \in \mathbb { R }
& \mathrm {~g} ( x ) = 2 x - k \quad \text { for } x \in \mathbb { R } \end{aligned}$$ where \(k\) is a constant.
  1. Find the value of \(k\) for which the line \(y = \mathrm { g } ( x )\) is a tangent to the curve \(y = \mathrm { f } ( x )\).
  2. In the case where \(k = - 9\), find the set of values of \(x\) for which \(\mathrm { f } ( x ) < \mathrm { g } ( x )\).
  3. In the case where \(k = - 1\), find \(\mathrm { g } ^ { - 1 } \mathrm { f } ( x )\) and solve the equation \(\mathrm { g } ^ { - 1 } \mathrm { f } ( x ) = 0\).
  4. Express \(\mathrm { f } ( x )\) in the form \(2 ( x + a ) ^ { 2 } + b\), where \(a\) and \(b\) are constants, and hence state the least value of \(\mathrm { f } ( x )\).