Edexcel FP3 2017 June — Question 6

Exam BoardEdexcel
ModuleFP3 (Further Pure Mathematics 3)
Year2017
SessionJune
Topic3x3 Matrices

6. The matrix \(\mathbf { M }\) is given by $$\mathbf { M } = \left( \begin{array} { r r r } 1 & k & 0
2 & - 2 & 1
- 4 & 1 & - 1 \end{array} \right) , k \in \mathbb { R } , k \neq \frac { 1 } { 2 }$$
  1. Show that \(\operatorname { det } \mathbf { M } = 1 - 2 k\).
  2. Find \(\mathbf { M } ^ { - 1 }\) in terms of \(k\). The straight line \(l _ { 1 }\) is mapped onto the straight line \(l _ { 2 }\) by the transformation represented by the matrix $$\left( \begin{array} { r r r } 1 & 0 & 0
    2 & - 2 & 1
    - 4 & 1 & - 1 \end{array} \right)$$ Given that \(l _ { 2 }\) has cartesian equation $$\frac { x - 1 } { 5 } = \frac { y + 2 } { 2 } = \frac { z - 3 } { 1 }$$
  3. find a cartesian equation of the line \(l _ { 1 }\)