2. A car of mass 500 kg is moving at a constant speed of \(20 \mathrm {~m} \mathrm {~s} ^ { - 1 }\) up a straight road inclined at an angle \(\theta\) to the horizontal, where \(\sin \theta = \frac { 1 } { 20 }\). The resistance to motion from non-gravitational forces is modelled as a constant force of magnitude 150 N .
- Find the rate of working of the engine of the car.
When the car is travelling up the road at \(20 \mathrm {~m} \mathrm {~s} ^ { - 1 }\), the engine is switched off. The car then comes to instantaneous rest, without braking, having moved a distance \(d\) metres up the road from the point where the engine was switched off. The resistance to motion from non-gravitational forces is again modelled as a constant force of magnitude 150 N .
- Use the work-energy principle to find the value of \(d\).