A-Level Maths
Courses
Papers
Questions
Search
Courses
LFM Pure
Reciprocal Trig & Identities
Q7
CAIE P1 2018 November — Question 7
Exam Board
CAIE
Module
P1 (Pure Mathematics 1)
Year
2018
Session
November
Topic
Reciprocal Trig & Identities
7
Show that \(\frac { \tan \theta + 1 } { 1 + \cos \theta } + \frac { \tan \theta - 1 } { 1 - \cos \theta } \equiv \frac { 2 ( \tan \theta - \cos \theta ) } { \sin ^ { 2 } \theta }\).
Hence, showing all necessary working, solve the equation $$\frac { \tan \theta + 1 } { 1 + \cos \theta } + \frac { \tan \theta - 1 } { 1 - \cos \theta } = 0$$ for \(0 ^ { \circ } < \theta < 90 ^ { \circ }\).
This paper
(11 questions)
View full paper
Q1
Q2
Q3
Q4
Q5
Q6
Q7
Q8
Q9
Q10
Q11