5.
\begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{de3245a7-cf6e-423e-8689-9a074bdbc23b-08_582_1230_271_374}
\captionsetup{labelformat=empty}
\caption{Figure 3}
\end{figure}
A beam \(A B\) has length 5 m and mass 25 kg . The beam is suspended in equilibrium in a horizontal position by two vertical ropes. One rope is attached to the beam at \(A\) and the other rope is attached to the point \(C\) on the beam where \(C B = 0.5 \mathrm {~m}\), as shown in Figure 3. A particle \(P\) of mass 60 kg is attached to the beam at \(B\) and the beam remains in equilibrium in a horizontal position. The beam is modelled as a uniform rod and the ropes are modelled as light strings.
- Find
- the tension in the rope attached to the beam at \(A\),
- the tension in the rope attached to the beam at \(C\).
Particle \(P\) is removed and replaced by a particle \(Q\) of mass \(M \mathrm {~kg}\) at \(B\). Given that the beam remains in equilibrium in a horizontal position,
- find
- the greatest possible value of \(M\),
- the greatest possible tension in the rope attached to the beam at \(C\).