Edexcel M1 2006 June — Question 7

Exam BoardEdexcel
ModuleM1 (Mechanics 1)
Year2006
SessionJune
TopicVectors Introduction & 2D

  1. \hspace{0pt} [In this question the unit vectors \(\mathbf { i }\) and \(\mathbf { j }\) are due east and north respectively.]
A ship \(S\) is moving with constant velocity \(( - 2.5 \mathbf { i } + 6 \mathbf { j } ) \mathrm { km } \mathrm { h } ^ { - 1 }\). At time 1200, the position vector of \(S\) relative to a fixed origin \(O\) is \(( 16 \mathbf { i } + 5 \mathbf { j } )\) km. Find
  1. the speed of \(S\),
  2. the bearing on which \(S\) is moving. The ship is heading directly towards a submerged rock \(R\). A radar tracking station calculates that, if \(S\) continues on the same course with the same speed, it will hit \(R\) at the time 1500.
  3. Find the position vector of \(R\). The tracking station warns the ship's captain of the situation. The captain maintains \(S\) on its course with the same speed until the time is 1400 . He then changes course so that \(S\) moves due north at a constant speed of \(5 \mathrm {~km} \mathrm {~h} ^ { - 1 }\). Assuming that \(S\) continues to move with this new constant velocity, find
  4. an expression for the position vector of the ship \(t\) hours after 1400,
  5. the time when \(S\) will be due east of \(R\),
  6. the distance of \(S\) from \(R\) at the time 1600.