7. [In this question, the unit vectors \(\mathbf { i }\) and \(\mathbf { j }\) are due east and due north respectively. Position vectors are relative to a fixed origin \(O\).]
A boat \(P\) is moving with constant velocity \(( - 4 \mathbf { i } + 8 \mathbf { j } ) \mathrm { km } \mathrm { h } ^ { - 1 }\).
- Calculate the speed of \(P\).
When \(t = 0\), the boat \(P\) has position vector \(( 2 \mathbf { i } - 8 \mathbf { j } ) \mathrm { km }\). At time \(t\) hours, the position vector of \(P\) is \(\mathbf { p ~ k m }\).
- Write down \(\mathbf { p }\) in terms of \(t\).
A second boat \(Q\) is also moving with constant velocity. At time \(t\) hours, the position vector of \(Q\) is \(\mathbf { q } \mathrm { km }\), where
$$\mathbf { q } = 18 \mathbf { i } + 12 \mathbf { j } - t ( 6 \mathbf { i } + 8 \mathbf { j } )$$
Find
- the value of \(t\) when \(P\) is due west of \(Q\),
- the distance between \(P\) and \(Q\) when \(P\) is due west of \(Q\).