Edexcel P4 2021 October — Question 9

Exam BoardEdexcel
ModuleP4 (Pure Mathematics 4)
Year2021
SessionOctober
TopicDifferential equations

9. \begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{08756c4b-6619-42da-ac8a-2bf065c01de8-30_528_1031_242_452} \captionsetup{labelformat=empty} \caption{Figure 4}
\end{figure} Figure 4 shows a cylindrical tank that contains some water. The tank has an internal diameter of 8 m and an internal height of 4.2 m .
Water is flowing into the tank at a constant rate of \(( 0.6 \pi ) \mathrm { m } ^ { 3 }\) per minute. There is a tap at point \(T\) at the bottom of the tank. At time \(t\) minutes after the tap has been opened,
  • the depth of the water is \(h\) metres
  • the water is leaving the tank at a rate of \(( 0.15 \pi h ) \mathrm { m } ^ { 3 }\) per minute
    1. Show that
$$\frac { \mathrm { d } h } { \mathrm {~d} t } = \frac { 12 - 3 h } { 320 }$$ Given that the depth of the water in the tank is 0.5 m when the tap is opened,
  • find the time taken for the depth of water in the tank to reach 3.5 m .