- Relative to a fixed origin \(O\), the line \(l\) has equation
$$\mathbf { r } = \left( \begin{array} { r }
1
- 10
- 9
\end{array} \right) + \lambda \left( \begin{array} { l }
4
4
2
\end{array} \right) \quad \text { where } \lambda \text { is a scalar parameter }$$
Given that \(\overrightarrow { O A }\) is a unit vector parallel to \(l\),
- find \(\overrightarrow { O A }\)
The point \(X\) lies on \(l\).
Given that \(X\) is the point on \(l\) that is closest to the origin, - find the coordinates of \(X\).
The points \(O , X\) and \(A\) form the triangle \(O X A\).
- Find the exact area of triangle \(O X A\).