Edexcel F2 2022 June — Question 6

Exam BoardEdexcel
ModuleF2 (Further Pure Mathematics 2)
Year2022
SessionJune
TopicPolar coordinates

6. \begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{ff9ff379-78d8-41c0-a177-ec346e359249-20_497_1196_260_520} \captionsetup{labelformat=empty} \caption{Figure 1}
\end{figure} The curve shown in Figure 1 has polar equation $$r = 4 a ( 1 + \cos \theta ) \quad 0 \leqslant \theta < \pi$$ where \(a\) is a positive constant.
The tangent to the curve at the point \(A\) is parallel to the initial line.
  1. Show that the polar coordinates of \(A\) are \(\left( 6 a , \frac { \pi } { 3 } \right)\) The point \(B\) lies on the curve such that angle \(A O B = \frac { \pi } { 6 }\)
    The finite region \(R\), shown shaded in Figure 1, is bounded by the line \(A B\) and the curve.
  2. Use calculus to determine the area of the shaded region \(R\), giving your answer in the form \(a ^ { 2 } ( n \pi + p \sqrt { 3 } + q )\), where \(n , p\) and \(q\) are integers.