Edexcel F2 2023 January — Question 4

Exam BoardEdexcel
ModuleF2 (Further Pure Mathematics 2)
Year2023
SessionJanuary
TopicTaylor series
TypeExplicit differential equation series solution

4. $$\frac { \mathrm { d } y } { \mathrm {~d} x } = y ^ { 2 } - x$$
  1. Show that $$\frac { \mathrm { d } ^ { 4 } y } { \mathrm {~d} x ^ { 4 } } = A y \frac { \mathrm {~d} ^ { 3 } y } { \mathrm {~d} x ^ { 3 } } + B \frac { \mathrm {~d} y } { \mathrm {~d} x } \frac { \mathrm {~d} ^ { 2 } y } { \mathrm {~d} x ^ { 2 } }$$ where \(A\) and \(B\) are integers to be determined. Given that \(y = 1\) at \(x = - 1\)
  2. determine the Taylor series solution for \(y\), in ascending powers of \(( x + 1 )\) up to and including the term in \(( x + 1 ) ^ { 4 }\), giving each coefficient in simplest form.