Edexcel F1 Specimen — Question 8

Exam BoardEdexcel
ModuleF1 (Further Pure Mathematics 1)
SessionSpecimen
TopicLinear transformations

8. (i) The transformation \(U\) is represented by the matrix \(\mathbf { P }\) where, $$P = \left( \begin{array} { r r } - \frac { 1 } { 2 } & - \frac { \sqrt { 3 } } { 2 }
\frac { \sqrt { 3 } } { 2 } & - \frac { 1 } { 2 } \end{array} \right)$$
  1. Describe fully the transformation \(U\). The transformation \(V\), represented by the matrix \(\mathbf { Q }\), is a stretch scale factor 3 parallel to the \(x\)-axis.
  2. Write down the matrix \(\mathbf { Q }\). Transformation \(U\) followed by transformation \(V\) is a transformation which is represented by matrix \(\mathbf { R }\).
  3. Find the matrix \(\mathbf { R }\).
    (ii) $$S = \left( \begin{array} { r r } 1 & - 3
    3 & 1 \end{array} \right)$$ Given that the matrix \(\mathbf { S }\) represents an enlargement, with a positive scale factor and centre \(( 0,0 )\), followed by a rotation with centre \(( 0,0 )\),
  4. find the scale factor of the enlargement,
  5. find the angle and direction of rotation, giving your answer in degrees to 1 decimal place.