Edexcel F1 2018 June — Question 2

Exam BoardEdexcel
ModuleF1 (Further Pure Mathematics 1)
Year2018
SessionJune
TopicLinear transformations

  1. The transformation represented by the \(2 \times 2\) matrix \(\mathbf { P }\) is an anticlockwise rotation about the origin through 45 degrees.
    1. Write down the matrix \(\mathbf { P }\), giving the exact numerical value of each element.
    $$\mathbf { Q } = \left( \begin{array} { c c } k \sqrt { 2 } & 0
    0 & k \sqrt { 2 } \end{array} \right) \text {, where } k \text { is a constant and } k > 0$$
  2. Describe fully the single geometrical transformation represented by the matrix \(\mathbf { Q }\). The combined transformation represented by the matrix \(\mathbf { P Q }\) transforms the rhombus \(R _ { 1 }\) onto the rhombus \(R _ { 2 }\). The area of the rhombus \(R _ { 1 }\) is 6 and the area of the rhombus \(R _ { 2 }\) is 147
  3. Find the value of the constant \(k\).