Edexcel F1 2015 January — Question 6

Exam BoardEdexcel
ModuleF1 (Further Pure Mathematics 1)
Year2015
SessionJanuary
TopicLinear transformations

6.
  1. $$\mathbf { A } = \left( \begin{array} { l l } 3 & 0
    0 & 1 \end{array} \right) \quad \mathbf { B } = \left( \begin{array} { r r } - \frac { \sqrt { 3 } } { 2 } & \frac { 1 } { 2 }
    - \frac { 1 } { 2 } & - \frac { \sqrt { 3 } } { 2 } \end{array} \right)$$ (a) Describe fully the single transformation represented by the matrix \(\mathbf { A }\).
    (b) Describe fully the single transformation represented by the matrix \(\mathbf { B }\). The transformation represented by \(\mathbf { A }\) followed by the transformation represented by \(\mathbf { B }\) is equivalent to the transformation represented by the matrix \(\mathbf { C }\).
    (c) Find \(\mathbf { C }\).
  2. \(\mathbf { M } = \left( \begin{array} { c c } 2 k + 5 & - 4
    1 & k \end{array} \right)\), where \(k\) is a real number. Show that \(\operatorname { det } \mathbf { M } \neq 0\) for all values of \(k\).