6.
\begin{figure}[h]
\captionsetup{labelformat=empty}
\caption{Figure 2}
\includegraphics[alt={},max width=\textwidth]{a5902f63-b19f-4e37-94b8-35c3b47ab9de-10_579_1326_268_423}
\end{figure}
Figure 2 shows the curve with equation
$$y = x ^ { 2 } \sin \left( \frac { 1 } { 2 } x \right) , \quad 0 < x \leq 2 \pi .$$
The finite region \(R\) bounded by the line \(x = \pi\), the \(x\)-axis, and the curve is shown shaded in Fig 2.
- Find the exact value of the area of \(R\), by integration. Give your answer in terms of \(\pi\).
The table shows corresponding values of \(x\) and \(y\).
| \(x\) | \(\pi\) | \(\frac { 5 \pi } { 4 }\) | \(\frac { 3 \pi } { 2 }\) | \(\frac { 7 \pi } { 4 }\) | \(2 \pi\) |
| \(y\) | 9.8696 | 14.247 | 15.702 | \(G\) | 0 |
- Find the value of \(G\).
- Use the trapezium rule with values of \(x ^ { 2 } \sin \left( \frac { 1 } { 2 } x \right)\)
- at \(x = \pi , x = \frac { 3 \pi } { 2 }\) and \(x = 2 \pi\) to find an approximate value for the area \(R\), giving your answer to 4 significant figures,
- at \(x = \pi , x = \frac { 5 \pi } { 4 } , x = \frac { 3 \pi } { 2 } , x = \frac { 7 \pi } { 4 }\) and \(x = 2 \pi\) to find an improved approximation for the area \(R\), giving your answer to 4 significant figures.
6. continued