Edexcel C4 2015 June — Question 6

Exam BoardEdexcel
ModuleC4 (Core Mathematics 4)
Year2015
SessionJune
TopicIntegration by Substitution

6. \begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{89d4a7a5-3f4f-4d16-b14e-a27243cedd78-11_666_993_244_392} \captionsetup{labelformat=empty} \caption{Diagram not to scale}
\end{figure} Figure 2 Figure 2 shows a sketch of the curve with equation \(y = \sqrt { ( 3 - x ) ( x + 1 ) } , 0 \leqslant x \leqslant 3\)
The finite region \(R\), shown shaded in Figure 2, is bounded by the curve, the \(x\)-axis, and the \(y\)-axis.
  1. Use the substitution \(x = 1 + 2 \sin \theta\) to show that $$\int _ { 0 } ^ { 3 } \sqrt { ( 3 - x ) ( x + 1 ) } d x = k \int _ { - \frac { \pi } { 6 } } ^ { \frac { \pi } { 2 } } \cos ^ { 2 } \theta d \theta$$ where \(k\) is a constant to be determined.
  2. Hence find, by integration, the exact area of \(R\).