CAIE P1 2014 November — Question 10

Exam BoardCAIE
ModuleP1 (Pure Mathematics 1)
Year2014
SessionNovember
TopicComposite & Inverse Functions

10
  1. Express \(x ^ { 2 } - 2 x - 15\) in the form \(( x + a ) ^ { 2 } + b\). The function f is defined for \(p \leqslant x \leqslant q\), where \(p\) and \(q\) are positive constants, by $$f : x \mapsto x ^ { 2 } - 2 x - 15$$ The range of f is given by \(c \leqslant \mathrm { f } ( x ) \leqslant d\), where \(c\) and \(d\) are constants.
  2. State the smallest possible value of \(c\). For the case where \(c = 9\) and \(d = 65\),
  3. find \(p\) and \(q\),
  4. find an expression for \(\mathrm { f } ^ { - 1 } ( x )\).