Edexcel C4 2005 June — Question 8

Exam BoardEdexcel
ModuleC4 (Core Mathematics 4)
Year2005
SessionJune
TopicDifferential equations

  1. Liquid is pouring into a container at a constant rate of \(20 \mathrm {~cm} ^ { 3 } \mathrm {~s} ^ { - 1 }\) and is leaking out at a rate proportional to the volume of liquid already in the container.
    1. Explain why, at time \(t\) seconds, the volume, \(V \mathrm {~cm} ^ { 3 }\), of liquid in the container satisfies the differential equation
    $$\frac { \mathrm { d } V } { \mathrm {~d} t } = 20 - k V$$ where \(k\) is a positive constant. The container is initially empty.
  2. By solving the differential equation, show that $$V = A + B \mathrm { e } ^ { - k t }$$ giving the values of \(A\) and \(B\) in terms of \(k\). Given also that \(\frac { \mathrm { d } V } { \mathrm {~d} t } = 10\) when \(t = 5\),
  3. find the volume of liquid in the container at 10 s after the start.