\includegraphics[max width=\textwidth, alt={}]{38694ab3-44cd-48d1-922a-d5eb09b62826-5_320_831_459_657}
A rigid body consists of a thin uniform rod \(A B\), of mass \(4 m\) and length \(6 a\), joined at \(B\) to a point on the circumference of a uniform circular disc, with centre \(O\), mass \(8 m\) and radius \(2 a\). The point \(C\) on the circumference of the disc is such that \(B C\) is a diameter and \(A B C\) is a straight line (see diagram). The body rotates about a smooth fixed horizontal axis through \(C\), perpendicular to the plane of the disc. The angle between \(C A\) and the downward vertical at time \(t\) is denoted by \(\theta\).
- Given that the body is performing small oscillations about the downward vertical, show that the period of these oscillations is approximately \(16 \pi \sqrt { } \left( \frac { a } { 11 g } \right)\).
- Given instead that the body is released from rest in the position given by \(\cos \theta = 0.6\), find the maximum speed of \(A\).