Edexcel FM1 AS (Further Mechanics 1 AS) 2021 June

Question 1
View details
1. \begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{05f6f654-05e5-41d5-a6e4-11cd91a6df83-02_826_700_244_550} \captionsetup{labelformat=empty} \caption{Figure 1}
\end{figure} A small book of mass \(m\) is held on a rough straight desk lid which is inclined at an angle \(\alpha\) to the horizontal, where \(\tan \alpha = \frac { 3 } { 4 }\). The book is released from rest at a distance of 0.5 m from the edge of the desk lid, as shown in Figure 1. The book slides down the desk lid and then hits the floor that is 0.8 m below the edge of the desk lid. The coefficient of friction between the book and the desk lid is 0.4 The book is modelled as a particle which, after leaving the desk lid, is assumed to move freely under gravity.
  1. Find, in terms of \(m\) and \(g\), the magnitude of the normal reaction on the book as it slides down the desk lid.
  2. Use the work-energy principle to find the speed of the book as it hits the floor.
Question 2
View details
2. \begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{05f6f654-05e5-41d5-a6e4-11cd91a6df83-06_458_278_248_986} \captionsetup{labelformat=empty} \caption{Figure 2}
\end{figure} A particle of mass em is at rest on a smooth horizontal plane between two smooth fixed parallel vertical walls, as shown in the plan view in Figure 2. The particle is projected along the plane with speed \(u\) towards one of the walls and strikes the wall at right angles. The coefficient of restitution between the particle and each wall is \(e\) and air resistance is modelled as being negligible. Using the model,
  1. find, in terms of \(m , u\) and \(e\), an expression for the total loss in the kinetic energy of the particle as a result of the first two impacts. Given that \(e\) can vary such that \(0 < e < 1\) and using the model,
  2. find the value of \(e\) for which the total loss in the kinetic energy of the particle as a result of the first two impacts is a maximum,
  3. describe the subsequent motion of the particle.
Question 3
View details
  1. The total mass of a cyclist and his bicycle is 100 kg .
In all circumstances, the magnitude of the resistance to the motion of the cyclist from non-gravitational forces is modelled as being \(k v ^ { 2 } \mathrm {~N}\), where \(v \mathrm {~m} \mathrm {~s} ^ { - 1 }\) is the speed of the cyclist. The cyclist can freewheel, without pedalling, down a slope that is inclined to the horizontal at an angle \(\alpha\), where \(\sin \alpha = \frac { 1 } { 35 }\), at a constant speed of \(V \mathrm {~m} \mathrm {~s} ^ { - 1 }\) When he is pedalling up a slope that is inclined to the horizontal at an angle \(\beta\), where \(\sin \beta = \frac { 1 } { 70 }\), and he is moving at the same constant speed \(V \mathrm {~ms} ^ { - 1 }\), he is working at a constant rate of \(P\) watts.
  1. Find \(P\) in terms of \(V\). If he pedals and works at a rate of 35 V watts on a horizontal road, he moves at a constant speed of \(U \mathrm {~m} \mathrm {~s} ^ { - 1 }\)
  2. Find \(U\) in terms of \(V\).
Question 4
View details
  1. Two particles, \(P\) and \(Q\), have masses \(m\) and \(e m\) respectively. The particles are moving on a smooth horizontal plane in the same direction along the same straight line when they collide directly. The coefficient of restitution between \(P\) and \(Q\) is \(e\), where \(0 < e < 1\)
Immediately before the collision the speed of \(P\) is \(u\) and the speed of \(Q\) is \(e u\).
  1. Show that the speed of \(Q\) immediately after the collision is \(u\).
  2. Show that the direction of motion of \(P\) is unchanged by the collision. The magnitude of the impulse on \(Q\) in the collision is \(\frac { 2 } { 9 } m u\)
  3. Find the possible values of \(e\).