CAIE Further Paper 2 (Further Paper 2) 2023 June

Question 1
View details
1
  1. Find the Maclaurin series for \(\sin ^ { - 1 } x\) up to and including the term in \(x ^ { 3 }\).
  2. Deduce an approximation to \(\int _ { 0 } ^ { \frac { 1 } { 5 } } \frac { 1 } { \sqrt { 1 - u ^ { 2 } } } \mathrm {~d} u\), giving your answer as a fraction.
Question 2
View details
2 The variables \(x\) and \(y\) are related by the differential equation $$6 \frac { d ^ { 2 } x } { d t ^ { 2 } } + 5 \frac { d x } { d t } + x = t ^ { 2 } + 10 t + 13$$
  1. Find the general solution for \(x\) in terms of \(t\).
  2. State an approximate solution for large positive values of \(t\).
Question 3
View details
3 By considering the binomial expansions of \(\left( z + \frac { 1 } { z } \right) ^ { 4 }\) and \(\left( z - \frac { 1 } { z } \right) ^ { 4 }\), where \(z = \cos \theta + i \sin \theta\), use de Moivre's theorem to show that $$\cot ^ { 4 } \theta = \frac { \cos 4 \theta + a \cos 2 \theta + b } { \cos 4 \theta - a \cos 2 \theta + b }$$ where \(a\) and \(b\) are integers to be determined.
Question 4
View details
4 The curve \(C\) has equation $$4 y ^ { 3 } + ( x + y ) ^ { 6 } = 109 .$$
  1. Show that, at the point \(( - 4,3 )\) on \(C , \frac { \mathrm { dy } } { \mathrm { dx } } = \frac { 1 } { 17 }\).
  2. Find the value of \(\frac { d ^ { 2 } y } { d x ^ { 2 } }\) at the point \(( - 4,3 )\).
Question 5
View details
5
  1. Starting from the definitions of cosh and sinh in terms of exponentials, prove that $$2 \cosh ^ { 2 } x = \cosh 2 x + 1$$ \includegraphics[max width=\textwidth, alt={}, center]{d421652f-576d-4843-abbf-54404e225fec-08_67_1550_374_347}
  2. Find the solution of the differential equation $$\frac { d y } { d x } + 2 y \tanh x = 1$$ for which \(y = 1\) when \(x = 0\). Give your answer in the form \(y = f ( x )\).
Question 6
View details
6
\includegraphics[max width=\textwidth, alt={}, center]{d421652f-576d-4843-abbf-54404e225fec-10_1015_988_260_577} The diagram shows the curve with equation \(\mathrm { y } = ( 1 - \mathrm { x } ) ^ { 2 }\) for \(0 \leqslant x \leqslant 1\), together with a set of \(n\) rectangles of width \(\frac { 1 } { n }\).
  1. By considering the sum of the areas of these rectangles, show that \(\int _ { 0 } ^ { 1 } ( 1 - x ) ^ { 2 } d x < U _ { n }\), where $$U _ { n } = \frac { 2 n ^ { 2 } + 3 n + 1 } { 6 n ^ { 2 } }$$
  2. Use a similar method to find, in terms of \(n\), a lower bound \(L _ { n }\) for \(\int _ { 0 } ^ { 1 } ( 1 - x ) ^ { 2 } d x\).
  3. Show that \(\lim _ { n \rightarrow \infty } \left( U _ { n } - L _ { n } \right) = 0\).
Question 7
View details
7 The integral \(\mathrm { I } _ { \mathrm { n } }\), where n is an integer, is defined by \(\mathrm { I } _ { \mathrm { n } } = \int _ { 0 } ^ { \frac { 4 } { 3 } } \left( 1 + \mathrm { x } ^ { 2 } \right) ^ { \frac { 1 } { 2 } \mathrm { n } } \mathrm { dx }\).
  1. Find the exact value of \(I _ { - 1 }\) giving your answer in the form \(\ln a\), where \(a\) is an integer to be determined.
  2. By considering \(\frac { \mathrm { d } } { \mathrm { dx } } \left( \mathrm { x } \left( 1 + \mathrm { x } ^ { 2 } \right) ^ { \frac { 1 } { 2 } } \mathrm { n } \right)\), or otherwise, show that $$( \mathrm { n } + 1 ) \mathrm { I } _ { \mathrm { n } } = \mathrm { nl } _ { \mathrm { n } - 2 } + \frac { 4 } { 3 } \left( \frac { 5 } { 3 } \right) ^ { \mathrm { n } }$$
  3. A curve has equation \(y = x ^ { 2 }\), for \(0 \leqslant x \leqslant \frac { 2 } { 3 }\). The arc length of the curve is denoted by \(s\). Use the substitution \(\mathrm { u } = 2 \mathrm { x }\) to show that \(\mathrm { s } = \frac { 1 } { 2 } \mathrm { l } _ { 1 }\) and find the exact value of \(s\).
Question 8
View details
8 The matrix \(\mathbf { A }\) is given by $$\mathbf { A } = \left( \begin{array} { c c c } a & - 6 a & 2 a + 2
0 & 1 - a & 0
0 & 2 - a & - 1 \end{array} \right)$$ where \(a\) is a constant with \(a \neq 0\) and \(a \neq 1\).
  1. Show that the equation \(\mathbf { A } \left( \begin{array} { c } x
    y
    z \end{array} \right) = \left( \begin{array} { c } 1
    2
    3 \end{array} \right)\) has a unique solution and interpret this situation geometrically.
  2. Show that the eigenvalues of \(\mathbf { A }\) are \(a , 1 - a\) and - 1 .
  3. Find a matrix \(\mathbf { P }\) and a diagonal matrix \(\mathbf { D }\) such that \(\mathbf { A } ^ { 4 } = \mathbf { P D P } ^ { - 1 }\).
  4. Use the characteristic equation of \(\mathbf { A }\) to find \(\mathbf { A } ^ { 4 }\) in terms of \(\mathbf { A }\) and \(a\).
    If you use the following page to complete the answer to any question, the question number must be clearly shown.