OCR MEI FP2 (Further Pure Mathematics 2) 2008 June

Question 1
View details
1
  1. A curve has cartesian equation \(\left( x ^ { 2 } + y ^ { 2 } \right) ^ { 2 } = 3 x y ^ { 2 }\).
    1. Show that the polar equation of the curve is \(r = 3 \cos \theta \sin ^ { 2 } \theta\).
    2. Hence sketch the curve.
  2. Find the exact value of \(\int _ { 0 } ^ { 1 } \frac { 1 } { \sqrt { 4 - 3 x ^ { 2 } } } \mathrm {~d} x\).
    1. Write down the series for \(\ln ( 1 + x )\) and the series for \(\ln ( 1 - x )\), both as far as the term in \(x ^ { 5 }\).
    2. Hence find the first three non-zero terms in the series for \(\ln \left( \frac { 1 + x } { 1 - x } \right)\).
    3. Use the series in part (ii) to show that \(\sum _ { r = 0 } ^ { \infty } \frac { 1 } { ( 2 r + 1 ) 4 ^ { r } } = \ln 3\).
Question 2
View details
2 You are given the complex numbers \(z = \sqrt { 32 } ( 1 + \mathrm { j } )\) and \(w = 8 \left( \cos \frac { 7 } { 12 } \pi + \mathrm { j } \sin \frac { 7 } { 12 } \pi \right)\).
  1. Find the modulus and argument of each of the complex numbers \(z , z ^ { * } , z w\) and \(\frac { z } { w }\).
  2. Express \(\frac { z } { w }\) in the form \(a + b \mathrm { j }\), giving the exact values of \(a\) and \(b\).
  3. Find the cube roots of \(z\), in the form \(r \mathrm { e } ^ { \mathrm { j } \theta }\), where \(r > 0\) and \(- \pi < \theta \leqslant \pi\).
  4. Show that the cube roots of \(z\) can be written as $$k _ { 1 } w ^ { * } , \quad k _ { 2 } z ^ { * } \quad \text { and } \quad k _ { 3 } \mathrm { j } w ,$$ where \(k _ { 1 } , k _ { 2 }\) and \(k _ { 3 }\) are real numbers. State the values of \(k _ { 1 } , k _ { 2 }\) and \(k _ { 3 }\).
Question 3
View details
3
  1. Given the matrix \(\mathbf { Q } = \left( \begin{array} { r r r } 2 & - 1 & k
    1 & 0 & 1
    3 & 1 & 2 \end{array} \right)\) (where \(k \neq 3\) ), find \(\mathbf { Q } ^ { - 1 }\) in terms of \(k\).
    Show that, when \(k = 4 , \mathbf { Q } ^ { - 1 } = \left( \begin{array} { r r r } - 1 & 6 & - 1
    1 & - 8 & 2
    1 & - 5 & 1 \end{array} \right)\). The matrix \(\mathbf { M }\) has eigenvectors \(\left( \begin{array} { l } 2
    1
    3 \end{array} \right) , \left( \begin{array} { r } - 1
    0
    1 \end{array} \right)\) and \(\left( \begin{array} { l } 4
    1
    2 \end{array} \right)\), with corresponding eigenvalues \(1 , - 1\) and 3 respectively.
  2. Write down a matrix \(\mathbf { P }\) and a diagonal matrix \(\mathbf { D }\) such that \(\mathbf { P } ^ { - 1 } \mathbf { M P } = \mathbf { D }\), and hence find the matrix \(\mathbf { M }\).
  3. Write down the characteristic equation for \(\mathbf { M }\), and use the Cayley-Hamilton theorem to find integers \(a , b\) and \(c\) such that \(\mathbf { M } ^ { 4 } = a \mathbf { M } ^ { 2 } + b \mathbf { M } + c \mathbf { I }\). Section B (18 marks)
Question 4
View details
4
  1. Starting from the definitions of \(\sinh x\) and \(\cosh x\) in terms of exponentials, prove that $$\cosh ^ { 2 } x - \sinh ^ { 2 } x = 1$$
  2. Solve the equation \(4 \cosh ^ { 2 } x + 9 \sinh x = 13\), giving the answers in exact logarithmic form.
  3. Show that there is only one stationary point on the curve $$y = 4 \cosh ^ { 2 } x + 9 \sinh x$$ and find the \(y\)-coordinate of the stationary point.
  4. Show that \(\int _ { 0 } ^ { \ln 2 } \left( 4 \cosh ^ { 2 } x + 9 \sinh x \right) \mathrm { d } x = 2 \ln 2 + \frac { 33 } { 8 }\).
Question 5
View details
5 A curve has parametric equations \(x = \lambda \cos \theta - \frac { 1 } { \lambda } \sin \theta , y = \cos \theta + \sin \theta\), where \(\lambda\) is a positive constant.
  1. Use your calculator to obtain a sketch of the curve in each of the cases $$\lambda = 0.5 , \quad \lambda = 3 \quad \text { and } \quad \lambda = 5 .$$
  2. Given that the curve is a conic, name the type of conic.
  3. Show that \(y\) has a maximum value of \(\sqrt { 2 }\) when \(\theta = \frac { 1 } { 4 } \pi\).
  4. Show that \(x ^ { 2 } + y ^ { 2 } = \left( 1 + \lambda ^ { 2 } \right) + \left( \frac { 1 } { \lambda ^ { 2 } } - \lambda ^ { 2 } \right) \sin ^ { 2 } \theta\), and deduce that the distance from the origin of any point on the curve is between \(\sqrt { 1 + \frac { 1 } { \lambda ^ { 2 } } }\) and \(\sqrt { 1 + \lambda ^ { 2 } }\).
  5. For the case \(\lambda = 1\), show that the curve is a circle, and find its radius.
  6. For the case \(\lambda = 2\), draw a sketch of the curve, and label the points \(\mathrm { A } , \mathrm { B } , \mathrm { C } , \mathrm { D } , \mathrm { E } , \mathrm { F } , \mathrm { G } , \mathrm { H }\) on the curve corresponding to \(\theta = 0 , \frac { 1 } { 4 } \pi , \frac { 1 } { 2 } \pi , \frac { 3 } { 4 } \pi , \pi , \frac { 5 } { 4 } \pi , \frac { 3 } { 2 } \pi , \frac { 7 } { 4 } \pi\) respectively. You should make clear what is special about each of these points. \footnotetext{Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (OCR) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity. OCR is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of University of Cambridge Local Examinations Syndicate (UCLES), which is itself a department of the University of Cambridge. }