CAIE FP1 (Further Pure Mathematics 1) 2014 November

Question 1
View details
1 Given that $$u _ { k } = \frac { 1 } { \sqrt { } ( 2 k - 1 ) } - \frac { 1 } { \sqrt { } ( 2 k + 1 ) }$$ express \(\sum _ { k = 13 } ^ { n } u _ { k }\) in terms of \(n\). Deduce the value of \(\sum _ { k = 13 } ^ { \infty } u _ { k }\).
Question 2
View details
2 A curve \(C\) has parametric equations $$x = \mathrm { e } ^ { t } \cos t , \quad y = \mathrm { e } ^ { t } \sin t , \quad \text { for } 0 \leqslant t \leqslant \frac { 1 } { 2 } \pi$$ Find the arc length of \(C\).
Question 3
View details
3 It is given that \(u _ { r } = r \times r !\) for \(r = 1,2,3 , \ldots\). Let \(S _ { n } = u _ { 1 } + u _ { 2 } + u _ { 3 } + \ldots + u _ { n }\). Write down the values of $$2 ! - S _ { 1 } , \quad 3 ! - S _ { 2 } , \quad 4 ! - S _ { 3 } , \quad 5 ! - S _ { 4 }$$ Conjecture a formula for \(S _ { n }\). Prove, by mathematical induction, a formula for \(S _ { n }\), for all positive integers \(n\).
Question 4
View details
4 A curve \(C\) has equation \(y = \frac { 2 x ^ { 2 } + x - 1 } { x - 1 }\). Find the equations of the asymptotes of \(C\). Show that there is no point on \(C\) for which \(1 < y < 9\).
Question 5
View details
5 Find the value of \(a\) for which the system of equations $$\begin{aligned} & x - y + 2 z = 4
& x + a y - 3 z = b
& x - y + 7 z = 13 \end{aligned}$$ where \(a\) and \(b\) are constants, has no unique solution. Taking \(a\) as the value just found,
  1. find the general solution in the case \(b = - 5\),
  2. interpret the situation geometrically in the case \(b \neq - 5\).
Question 6
View details
6 Use de Moivre's theorem to show that $$\cos 5 \theta \equiv \cos \theta \left( 16 \sin ^ { 4 } \theta - 12 \sin ^ { 2 } \theta + 1 \right)$$ By considering the equation \(\cos 5 \theta = 0\), show that the exact value of \(\sin ^ { 2 } \left( \frac { 1 } { 10 } \pi \right)\) is \(\frac { 3 - \sqrt { 5 } } { 8 }\).
Question 7
View details
7 Let \(I _ { n } = \int _ { 0 } ^ { 1 } ( 1 - x ) ^ { n } \mathrm { e } ^ { x } \mathrm {~d} x\). Show that, for all positive integers \(n\), $$I _ { n } = n I _ { n - 1 } - 1$$ Find the exact value of \(I _ { 4 }\). By considering the area of the region enclosed by the \(x\)-axis, the \(y\)-axis and the curve with equation \(y = ( 1 - x ) ^ { 4 } \mathrm { e } ^ { x }\) in the interval \(0 \leqslant x \leqslant 1\), show that $$\frac { 65 } { 24 } < \mathrm { e } < \frac { 11 } { 4 }$$
Question 8
View details
8 A circle has polar equation \(r = a\), for \(0 \leqslant \theta < 2 \pi\), and a cardioid has polar equation \(r = a ( 1 - \cos \theta )\), for \(0 \leqslant \theta < 2 \pi\), where \(a\) is a positive constant. Draw sketches of the circle and the cardioid on the same diagram. Write down the polar coordinates of the points of intersection of the circle and the cardioid. Show that the area of the region that is both inside the circle and inside the cardioid is $$\left( \frac { 5 } { 4 } \pi - 2 \right) a ^ { 2 }$$
Question 9
View details
9 Given that $$x \frac { \mathrm {~d} ^ { 2 } y } { \mathrm {~d} x ^ { 2 } } + ( 2 x + 2 ) \frac { \mathrm { d } y } { \mathrm {~d} x } + ( 2 - 3 x ) y = 10 \mathrm { e } ^ { 2 x }$$ and that \(v = x y\), show that $$\frac { \mathrm { d } ^ { 2 } v } { \mathrm {~d} x ^ { 2 } } + 2 \frac { \mathrm {~d} v } { \mathrm {~d} x } - 3 v = 10 \mathrm { e } ^ { 2 x }$$ Find the general solution for \(y\) in terms of \(x\).
Question 10
View details
10 The line \(l _ { 1 }\) is parallel to the vector \(\mathbf { i } - 2 \mathbf { j } - 3 \mathbf { k }\) and passes through the point \(A\), whose position vector is \(3 \mathbf { i } + 3 \mathbf { j } - 4 \mathbf { k }\). The line \(l _ { 2 }\) is parallel to the vector \(- 2 \mathbf { i } + \mathbf { j } + 3 \mathbf { k }\) and passes through the point \(B\), whose position vector is \(- 3 \mathbf { i } - \mathbf { j } + 2 \mathbf { k }\). The point \(P\) on \(l _ { 1 }\) and the point \(Q\) on \(l _ { 2 }\) are such that \(P Q\) is perpendicular to both \(l _ { 1 }\) and \(l _ { 2 }\). Find
  1. the length \(P Q\),
  2. the cartesian equation of the plane \(\Pi\) containing \(P Q\) and \(l _ { 2 }\),
  3. the perpendicular distance of \(A\) from \(\Pi\).
Question 11 EITHER
View details
The roots of the quartic equation \(x ^ { 4 } + 4 x ^ { 3 } + 2 x ^ { 2 } - 4 x + 1 = 0\) are \(\alpha , \beta , \gamma\) and \(\delta\). Find the values of
  1. \(\alpha + \beta + \gamma + \delta\),
  2. \(\alpha ^ { 2 } + \beta ^ { 2 } + \gamma ^ { 2 } + \delta ^ { 2 }\),
  3. \(\frac { 1 } { \alpha } + \frac { 1 } { \beta } + \frac { 1 } { \gamma } + \frac { 1 } { \delta }\),
  4. \(\frac { \alpha } { \beta \gamma \delta } + \frac { \beta } { \alpha \gamma \delta } + \frac { \gamma } { \alpha \beta \delta } + \frac { \delta } { \alpha \beta \gamma }\). Using the substitution \(y = x + 1\), find a quartic equation in \(y\). Solve this quartic equation and hence find the roots of the equation \(x ^ { 4 } + 4 x ^ { 3 } + 2 x ^ { 2 } - 4 x + 1 = 0\).
Question 11 OR
View details
The square matrix \(\mathbf { A }\) has \(\lambda\) as an eigenvalue with \(\mathbf { e }\) as a corresponding eigenvector. Show that if \(\mathbf { A }\) is non-singular then
  1. \(\lambda \neq 0\),
  2. the matrix \(\mathbf { A } ^ { - 1 }\) has \(\lambda ^ { - 1 }\) as an eigenvalue with \(\mathbf { e }\) as a corresponding eigenvector. The \(3 \times 3\) matrices \(\mathbf { A }\) and \(\mathbf { B }\) are given by $$\mathbf { A } = \left( \begin{array} { r r r } - 2 & 2 & - 4
    0 & - 1 & 5
    0 & 0 & 3 \end{array} \right) \quad \text { and } \quad \mathbf { B } = ( \mathbf { A } + 3 \mathbf { I } ) ^ { - 1 }$$ where \(\mathbf { I }\) is the \(3 \times 3\) identity matrix. Find a non-singular matrix \(\mathbf { P }\), and a diagonal matrix \(\mathbf { D }\), such that \(\mathbf { B } = \mathbf { P D P } ^ { - 1 }\). \footnotetext{Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity. Cambridge International Examinations is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of University of Cambridge Local Examinations Syndicate (UCLES), which is itself a department of the University of Cambridge. }