OCR MEI FP1 (Further Pure Mathematics 1) 2013 January

Question 1
View details
1 Transformation A is represented by matrix \(\mathbf { A } = \left( \begin{array} { l l } 0 & 1
1 & 0 \end{array} \right)\) and transformation B is represented by matrix \(\mathbf { B } = \left( \begin{array} { l l } 2 & 0
0 & 3 \end{array} \right)\).
  1. Describe transformations A and B .
  2. Find the matrix for the composite transformation A followed by B .
Question 2
View details
2 Given that \(z = a + b \mathrm { j }\), find \(\operatorname { Re } \left( \frac { z } { z ^ { * } } \right)\) and \(\operatorname { Im } \left( \frac { z } { z ^ { * } } \right)\).
Question 3
View details
3 You are given that \(z = 2 + \mathrm { j }\) is a root of the cubic equation \(2 z ^ { 3 } + p z ^ { 2 } + 22 z - 15 = 0\), where \(p\) is real. Find the other roots and the value of \(p\).
Question 4
View details
4
  1. Show that \(x ^ { 2 } - x + 2 > 0\) for all real \(x\).
  2. Solve the inequality \(\frac { 2 x } { x ^ { 2 } - x + 2 } > x\).
Question 5
View details
5 You are given that \(\frac { 3 } { ( 5 + 3 x ) ( 2 + 3 x ) } \equiv \frac { 1 } { 2 + 3 x } - \frac { 1 } { 5 + 3 x }\).
  1. Use this result to find \(\sum _ { r = 1 } ^ { 100 } \frac { 1 } { ( 5 + 3 r ) ( 2 + 3 r ) }\), giving your answer as an exact fraction.
  2. Write down the limit to which \(\sum _ { r = 1 } ^ { n } \frac { 1 } { ( 5 + 3 r ) ( 2 + 3 r ) }\) converges as \(n\) tends to infinity.
Question 6
View details
6 Prove by induction that \(1 ^ { 2 } - 2 ^ { 2 } + 3 ^ { 2 } - 4 ^ { 2 } + \ldots + ( - 1 ) ^ { n - 1 } n ^ { 2 } = ( - 1 ) ^ { n - 1 } \frac { n ( n + 1 ) } { 2 }\).
Question 7
View details
7 Fig. 7 shows a sketch of \(y = \frac { x - 4 } { ( x - 5 ) ( x - 8 ) }\). \begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{2e47c6fb-574b-4eee-81c8-4031fee9e2ba-3_696_975_406_529} \captionsetup{labelformat=empty} \caption{Fig. 7}
\end{figure}
  1. Write down the equations of the three asymptotes and the coordinates of the points where the curve crosses the axes. Hence write down the solution of the inequality \(\frac { x - 4 } { ( x - 5 ) ( x - 8 ) } > 0\).
  2. The equation \(\frac { x - 4 } { ( x - 5 ) ( x - 8 ) } = k\) has no real solutions. Show that \(- 1 < k < - \frac { 1 } { 9 }\). Relate this result to the graph of \(y = \frac { x - 4 } { ( x - 5 ) ( x - 8 ) }\).
Question 8
View details
8
  1. Indicate on an Argand diagram the set of points \(z\) for which \(| z - ( - 8 + 15 \mathrm { j } ) | < 10\).
  2. Using the diagram, show that \(7 < | z | < 27\).
  3. Mark on your Argand diagram the point, \(P\), at which \(| z - ( - 8 + 15 \mathrm { j } ) | = 10\) and \(\arg z\) takes its maximum value. Find the modulus and argument of \(z\) at \(P\).
Question 9
View details
9 You are given that \(\mathbf { A } = \left( \begin{array} { r r r } 8 & - 7 & - 12
- 10 & 5 & 15
- 9 & 6 & 6 \end{array} \right)\) and \(\mathbf { A } ^ { - 1 } = k \left( \begin{array} { r r r } 4 & 2 & 3
5 & 4 & 0
1 & - 1 & 2 \end{array} \right)\).
  1. Find the exact value of \(k\).
  2. Using your answer to part (i), solve the following simultaneous equations. $$\begin{aligned} 8 x - 7 y - 12 z & = 14
    - 10 x + 5 y + 15 z & = - 25
    - 9 x + 6 y + 6 z & = 3 \end{aligned}$$ You are also given that \(\mathbf { B } = \left( \begin{array} { r r r } - 7 & 5 & 15
    a & - 8 & - 21
    2 & - 1 & - 3 \end{array} \right)\) and \(\mathbf { B } ^ { - 1 } = \frac { 1 } { 3 } \left( \begin{array} { r r r } 1 & 0 & 5
    - 4 & - 3 & 1
    2 & 1 & b \end{array} \right)\).
  3. Find the values of \(a\) and \(b\).
  4. Write down an expression for \(( \mathbf { A B } ) ^ { - 1 }\) in terms of \(\mathbf { A } ^ { - 1 }\) and \(\mathbf { B } ^ { - 1 }\). Hence find \(( \mathbf { A B } ) ^ { - 1 }\).