OCR FP1 (Further Pure Mathematics 1) 2008 June

Question 1
View details
1 The matrix \(\mathbf { A }\) is given by \(\mathbf { A } = \left( \begin{array} { l l } 4 & 1
5 & 2 \end{array} \right)\) and \(\mathbf { I }\) is the \(2 \times 2\) identity matrix. Find
  1. \(\mathbf { A } - 3 \mathbf { I }\),
  2. \(\mathrm { A } ^ { - 1 }\).
Question 2
View details
2 The complex number \(3 + 4 \mathrm { i }\) is denoted by \(a\).
  1. Find \(| a |\) and \(\arg a\).
  2. Sketch on a single Argand diagram the loci given by
    (a) \(| z - a | = | a |\),
    (b) \(\arg ( z - 3 ) = \arg a\).
Question 3
View details
3
  1. Show that \(\frac { 1 } { r ! } - \frac { 1 } { ( r + 1 ) ! } = \frac { r } { ( r + 1 ) ! }\).
  2. Hence find an expression, in terms of \(n\), for $$\frac { 1 } { 2 ! } + \frac { 2 } { 3 ! } + \frac { 3 } { 4 ! } + \ldots + \frac { n } { ( n + 1 ) ! }$$
Question 4
View details
4 The matrix \(\mathbf { A }\) is given by \(\mathbf { A } = \left( \begin{array} { l l } 3 & 1
0 & 1 \end{array} \right)\). Prove by induction that, for \(n \geqslant 1\), $$\mathbf { A } ^ { n } = \left( \begin{array} { c c } 3 ^ { n } & \frac { 1 } { 2 } \left( 3 ^ { n } - 1 \right)
0 & 1 \end{array} \right)$$
Question 5
View details
5 Find \(\sum _ { r = 1 } ^ { n } r ^ { 2 } ( r - 1 )\), expressing your answer in a fully factorised form.
Question 6
View details
6 The cubic equation \(x ^ { 3 } + a x ^ { 2 } + b x + c = 0\), where \(a , b\) and \(c\) are real, has roots ( \(3 + \mathrm { i }\) ) and 2 .
  1. Write down the other root of the equation.
  2. Find the values of \(a , b\) and \(c\).
Question 7
View details
7 Describe fully the geometrical transformation represented by each of the following matrices:
  1. \(\left( \begin{array} { l l } 6 & 0
    0 & 6 \end{array} \right)\),
  2. \(\left( \begin{array} { l l } 0 & 1
    1 & 0 \end{array} \right)\),
  3. \(\left( \begin{array} { l l } 1 & 0
    0 & 6 \end{array} \right)\),
  4. \(\left( \begin{array} { r r } 0.8 & 0.6
    - 0.6 & 0.8 \end{array} \right)\).
Question 8
View details
8 The quadratic equation \(x ^ { 2 } + k x + 2 k = 0\), where \(k\) is a non-zero constant, has roots \(\alpha\) and \(\beta\). Find a quadratic equation with roots \(\frac { \alpha } { \beta }\) and \(\frac { \beta } { \alpha }\).
Question 9
View details
9
  1. Use an algebraic method to find the square roots of the complex number \(5 + 12 \mathrm { i }\).
  2. Find \(( 3 - 2 \mathrm { i } ) ^ { 2 }\).
  3. Hence solve the quartic equation \(x ^ { 4 } - 10 x ^ { 2 } + 169 = 0\).
Question 10
View details
10 The matrix \(\mathbf { A }\) is given by \(\mathbf { A } = \left( \begin{array} { r r r } a & 8 & 10
2 & 1 & 2
4 & 3 & 6 \end{array} \right)\). The matrix \(\mathbf { B }\) is such that \(\mathbf { A B } = \left( \begin{array} { l l l } a & 6 & 1
1 & 1 & 0
1 & 3 & 0 \end{array} \right)\).
  1. Show that \(\mathbf { A B }\) is non-singular.
  2. Find \(( \mathbf { A B } ) ^ { - 1 }\).
  3. Find \(\mathbf { B } ^ { - 1 }\).