AQA M3 (Mechanics 3) 2014 June

Question 2 6 marks
View details
2 A rod, of length \(x \mathrm {~m}\) and moment of inertia \(I \mathrm {~kg} \mathrm {~m} ^ { 2 }\), is free to rotate in a vertical plane about a fixed smooth horizontal axis through one end. When the rod is hanging at rest, its lower end receives an impulse of magnitude \(J\) Ns, which is just sufficient for the rod to complete full revolutions. It is thought that there is a relationship between \(J , x , I\), the acceleration due to gravity \(g \mathrm {~m} \mathrm {~s} ^ { - 2 }\) and a dimensionless constant \(k\), such that $$J = k x ^ { \alpha } I ^ { \beta } g ^ { \gamma }$$ where \(\alpha , \beta\) and \(\gamma\) are constants.
Find the values of \(\alpha , \beta\) and \(\gamma\) for which this relationship is dimensionally consistent.
[0pt] [6 marks]
Question 3
View details
3 A particle of mass 0.5 kg is moving in a straight line on a smooth horizontal surface.
The particle is then acted on by a horizontal force for 3 seconds. This force acts in the direction of motion of the particle and at time \(t\) seconds has magnitude \(( 3 t + 1 ) \mathrm { N }\). When \(t = 0\), the velocity of the particle is \(4 \mathrm {~m} \mathrm {~s} ^ { - 1 }\).
  1. Find the magnitude of the impulse of the force on the particle between the times \(t = 0\) and \(t = 3\).
  2. Hence find the velocity of the particle when \(t = 3\).
  3. Find the value of \(t\) when the velocity of the particle is \(20 \mathrm {~m} \mathrm {~s} ^ { - 1 }\).
Question 4
View details
4 Two boats, \(A\) and \(B\), are moving on straight courses with constant speeds. At noon, \(A\) and \(B\) have position vectors \(( \mathbf { i } + 2 \mathbf { j } ) \mathrm { km }\) and \(( - \mathbf { i } + \mathbf { j } ) \mathrm { km }\) respectively relative to a lighthouse. Thirty minutes later, the position vectors of \(A\) and \(B\) are ( \(- \mathbf { i } + 3 \mathbf { j }\) ) km and \(( 2 \mathbf { i } - \mathbf { j } ) \mathrm { km }\) respectively relative to the lighthouse.
  1. Find the velocity of \(A\) relative to \(B\) in the form \(( m \mathbf { i } + n \mathbf { j } ) \mathrm { km } \mathrm { h } ^ { - 1 }\), where \(m\) and \(n\) are integers.
  2. The position vector of \(A\) relative to \(B\) at time \(t\) hours after noon is \(\mathbf { r } \mathrm { km }\). Show that $$\mathbf { r } = ( 2 - 10 t ) \mathbf { i } + ( 1 + 6 t ) \mathbf { j }$$
  3. Determine the value of \(t\) when \(A\) and \(B\) are closest together.
  4. Find the shortest distance between \(A\) and \(B\).
Question 5
View details
5 A small smooth ball is dropped from a height of \(h\) above a point \(A\) on a fixed smooth plane inclined at an angle \(\theta\) to the horizontal. The ball falls vertically and collides with the plane at the point \(A\). The ball rebounds and strikes the plane again at a point \(B\), as shown in the diagram. The points \(A\) and \(B\) lie on a line of greatest slope of the inclined plane.
\includegraphics[max width=\textwidth, alt={}, center]{79a08adc-ba78-4afb-96ef-ed595ad373d8-12_318_636_548_712}
  1. Explain whether or not the component of the velocity of the ball parallel to the plane is changed by the collision.
  2. The coefficient of restitution between the ball and the plane is \(e\). Find, in terms of \(h , \theta , e\) and \(g\), the components of the velocity of the ball parallel to and perpendicular to the plane immediately after the collision.
  3. Show that the distance \(A B\) is given by $$4 h e ( e + 1 ) \sin \theta$$
Question 6
View details
6 Two smooth spheres, \(A\) and \(B\), have equal radii and masses 2 kg and 4 kg respectively. The spheres are moving on a smooth horizontal surface and collide. As they collide, \(A\) has velocity \(3 \mathrm {~m} \mathrm {~s} ^ { - 1 }\) at an angle of \(60 ^ { \circ }\) to the line of centres of the spheres, and \(B\) has velocity \(5 \mathrm {~m} \mathrm {~s} ^ { - 1 }\) at an angle of \(60 ^ { \circ }\) to the line of centres, as shown in the diagram.
\includegraphics[max width=\textwidth, alt={}, center]{79a08adc-ba78-4afb-96ef-ed595ad373d8-16_291_844_607_468} Just after the collision, \(B\) moves in a direction perpendicular to the line of centres.
  1. Find the speed of \(A\) immediately after the collision.
  2. Find the acute angle, correct to the nearest degree, between the velocity of \(A\) and the line of centres immediately after the collision.
  3. Find the coefficient of restitution between the spheres.
  4. Find the magnitude of the impulse exerted on \(B\) during the collision.
Question 7 4 marks
View details
7 Two small smooth spheres, \(A\) and \(B\), are the same size and have masses \(2 m\) and \(m\) respectively. Initially, the spheres are at rest on a smooth horizontal surface. The sphere \(A\) receives an impulse of magnitude \(J\) and moves with speed \(2 u\) directly towards \(B\).
  1. \(\quad\) Find \(J\) in terms of \(m\) and \(u\).
  2. The sphere \(A\) collides directly with \(B\). The coefficient of restitution between \(A\) and \(B\) is \(\frac { 2 } { 3 }\). Find, in terms of \(u\), the speeds of \(A\) and \(B\) immediately after the collision.
  3. At the instant of collision, the centre of \(B\) is at a distance \(s\) from a fixed smooth vertical wall which is at right angles to the direction of motion of \(A\) and \(B\), as shown in the diagram.
    \includegraphics[max width=\textwidth, alt={}, center]{79a08adc-ba78-4afb-96ef-ed595ad373d8-20_280_1114_1048_497} Subsequently, \(B\) collides with the wall. The radius of each sphere is \(r\).
    Show that the distance of the centre of \(A\) from the wall at the instant that \(B\) hits the wall is \(\frac { 3 s + 12 r } { 5 }\).
  4. The diagram below shows the positions of \(A\) and \(B\) when \(B\) hits the wall.
    \includegraphics[max width=\textwidth, alt={}, center]{79a08adc-ba78-4afb-96ef-ed595ad373d8-20_330_1109_1822_493} The sphere \(B\) collides with \(A\) again after rebounding from the wall. The coefficient of restitution between \(B\) and the wall is \(\frac { 2 } { 5 }\). Find the distance of the centre of \(\boldsymbol { B }\) from the wall at the instant when \(A\) and \(B\) collide again.
    [0pt] [4 marks]
    \includegraphics[max width=\textwidth, alt={}, center]{79a08adc-ba78-4afb-96ef-ed595ad373d8-24_2488_1728_219_141}