AQA M3 (Mechanics 3)

Question 5
View details
5 A football is kicked from a point \(O\) on a horizontal football ground with a velocity of \(20 \mathrm {~m} \mathrm {~s} ^ { - 1 }\) at an angle of elevation of \(30 ^ { \circ }\). During the motion, the horizontal and upward vertical displacements of the football from \(O\) are \(x\) metres and \(y\) metres respectively.
  1. Show that \(x\) and \(y\) satisfy the equation $$y = x \tan 30 ^ { \circ } - \frac { g x ^ { 2 } } { 800 \cos ^ { 2 } 30 ^ { \circ } }$$
  2. On its downward flight the ball hits the horizontal crossbar of the goal at a point which is 2.5 m above the ground. Using the equation given in part (a), find the horizontal distance from \(O\) to the goal.
    (4 marks)
    \includegraphics[max width=\textwidth, alt={}, center]{fc5bfc4b-68bb-4a23-874b-87e9558dc990-04_330_1411_1902_303}
  3. State two modelling assumptions that you have made.
Question 6
View details
6 Two smooth billiard balls \(A\) and \(B\), of identical size and equal mass, move towards each other on a horizontal surface and collide. Just before the collision, \(A\) has velocity \(8 \mathrm {~m} \mathrm {~s} ^ { - 1 }\) in a direction inclined at \(30 ^ { \circ }\) to the line of centres of the balls, and \(B\) has velocity \(4 \mathrm {~m} \mathrm {~s} ^ { - 1 }\) in a direction inclined at \(60 ^ { \circ }\) to the line of centres, as shown in the diagram.
\includegraphics[max width=\textwidth, alt={}, center]{fc5bfc4b-68bb-4a23-874b-87e9558dc990-05_508_1420_532_294} The coefficient of restitution between the balls is \(\frac { 1 } { 2 }\).
  1. Find the speed of \(B\) immediately after the collision.
  2. Find the angle between the velocity of \(B\) and the line of centres of the balls immediately after the collision.
Question 7 57 marks
View details
7 A projectile is fired from a point \(O\) on the slope of a hill which is inclined at an angle \(\alpha\) to the horizontal. The projectile is fired up the hill with velocity \(U\) at an angle \(\theta\) above the hill and first strikes it at a point \(A\). The projectile is modelled as a particle and the hill is modelled as a plane with \(O A\) as a line of greatest slope.
    1. Find, in terms of \(U , g , \alpha\) and \(\theta\), the time taken by the projectile to travel from \(O\) to \(A\).
    2. Hence, or otherwise, show that the magnitude of the component of the velocity of the projectile perpendicular to the hill, when it strikes the hill at the point \(A\), is the same as it was initially at \(O\).
  1. The projectile rebounds and strikes the hill again at a point \(B\). The hill is smooth and the coefficient of restitution between the projectile and the hill is \(e\).
    \includegraphics[max width=\textwidth, alt={}, center]{fc5bfc4b-68bb-4a23-874b-87e9558dc990-06_428_1332_1023_338} Find the ratio of the time of flight from \(O\) to \(A\) to the time of flight from \(A\) to \(B\). Give your answer in its simplest form.