OCR MEI M1 (Mechanics 1)

Question 1
View details
1 A car of mass 1000 kg is travelling along a straight, level road. \begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{d5a09ed4-a32f-4ff7-aa08-6e54c2ab26a0-1_150_868_316_602} \captionsetup{labelformat=empty} \caption{Fig. 6.1}
\end{figure}
  1. Calculate the acceleration of the car when a resultant force of 2000 N acts on it in the direction of its motion. How long does it take the car to increase its speed from \(5 \mathrm {~ms} ^ { - 1 }\) to \(12.5 \mathrm {~ms} ^ { - 1 }\) ? The car has an acceleration of \(1.4 \mathrm {~ms} ^ { - 2 }\) when there is a driving force of 2000 N .
  2. Show that the resistance to motion of the car is 600 N . A trailer is now atached to the car, as shown in Fig. 6.2. The car still has a driving force of 2000 N and resistance to motion of 600 N . The trailer has a mass of 800 kg . The tow-bar connecting the car and the trailer is light and horizontal. The car and trailer are accelerating at \(0.7 \mathrm {~ms} ^ { 2 }\). \begin{figure}[h]
    \includegraphics[alt={},max width=\textwidth]{d5a09ed4-a32f-4ff7-aa08-6e54c2ab26a0-1_165_883_1279_554} \captionsetup{labelformat=empty} \caption{Fig. 6.2}
    \end{figure}
  3. Show that the resistance to the motion of the trailer is 140 N .
  4. Calculate the force in the tow bar. The driving force is now removed and a braking force of 610 N is applied to the car. All the resistances to motion remain as before. The trailer has no brakes.
  5. Calculate the new acceleration. Calculate also the force in the tow-bar, stating whether it is a tension or a thrust (compression).
Question 2
View details
2 Fig. 3 shows two people, Sam and Tom, pushing a car of mass 1000 kg along a straight line \(l\) on level ground. Sam pushes with a constant horizontal force of 300 N at an angle of \(30 ^ { \circ }\) to the line \(l\).
Tom pushes with a constant horizontal force of 175 N at an angle of \(15 ^ { \circ }\) to the line \(l\). \begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{d5a09ed4-a32f-4ff7-aa08-6e54c2ab26a0-2_289_1132_571_507} \captionsetup{labelformat=empty} \caption{Fig. 3}
\end{figure}
  1. The car starts at rest and moves with constant acceleration. After 6 seconds it has travelled 7.2 m . Find its acceleration.
  2. Find the resistance force acting on the car along the line \(l\).
  3. The resultant of the forces exerted by Sam and Tom is not in the direction of the car's acceleration. Explain briefly why.
Question 3
View details
3 A particle is travelling along a straight line with constant acceleration. \(\mathrm { P } , \mathrm { O }\) and Q are points on the line, as illustrated in Fig. 4. The distance from P to O is 5 m and the distance from O to Q is 30 m . \begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{d5a09ed4-a32f-4ff7-aa08-6e54c2ab26a0-2_115_1169_1719_499} \captionsetup{labelformat=empty} \caption{Fig. 4}
\end{figure} Initially the particle is at O . After 10 s , it is at Q and its velocity is \(9 \mathrm {~m} \mathrm {~s} ^ { - 1 }\) in the direction \(\overrightarrow { \mathrm { OQ } }\).
  1. Find the initial velocity and the acceleration of the particle.
  2. Prove that the particle is never at P .
Question 4
View details
4 A car is driven with constant acceleration, \(a \mathrm {~m} \mathrm {~s} { } ^ { 2 }\), along a straight road. Its speed when it passes a road sign is \(u \mathrm {~ms} { } ^ { 1 }\). The car travels 14 m in the 2 seconds after passing the sign; 5 seconds after passing the sign it has a speed of \(19 \mathrm {~ms} { } ^ { 1 }\).
  1. Write down two equations connecting \(a\) and \(u\). Hence find the values of \(a\) and \(u\).
  2. What distance does the car travel in the 5 seconds after passing the road sign?