CAIE Further Paper 1 (Further Paper 1) 2020 November

Question 1
View details
1 The matrix \(\mathbf { M }\) is given by \(\mathbf { M } = \left( \begin{array} { l l } 1 & b
0 & 1 \end{array} \right) \left( \begin{array} { l l } a & 0
0 & 1 \end{array} \right)\), where \(a\) and \(b\) are positive constants.
  1. The matrix \(\mathbf { M }\) represents a sequence of two geometrical transformations. State the type of each transformation, and make clear the order in which they are applied.
    The unit square in the \(x - y\) plane is transformed by \(\mathbf { M }\) onto parallelogram \(O P Q R\).
  2. Find, in terms of \(a\) and \(b\), the matrix which transforms parallelogram \(O P Q R\) onto the unit square.
    It is given that the area of \(O P Q R\) is \(2 \mathrm {~cm} ^ { 2 }\) and that the line \(\mathrm { x } + 3 \mathrm { y } = 0\) is invariant under the transformation represented by \(\mathbf { M }\).
  3. Find the values of \(a\) and \(b\).
Question 2
View details
2
  1. Use standard results from the List of Formulae (MF19) to show that $$\sum _ { r = 1 } ^ { n } ( 7 r + 1 ) ( 7 r + 8 ) = a n ^ { 3 } + b n ^ { 2 } + c n$$ where \(a , b\) and \(c\) are constants to be determined.
  2. Use the method of differences to find \(\sum _ { r = 1 } ^ { n } \frac { 1 } { ( 7 r + 1 ) ( 7 r + 8 ) }\) in terms of \(n\).
  3. Deduce the value of \(\sum _ { r = 1 } ^ { \infty } \frac { 1 } { ( 7 r + 1 ) ( 7 r + 8 ) }\).
Question 3
View details
3 The cubic equation \(\mathrm { x } ^ { 3 } + \mathrm { cx } + 1 = 0\), where \(c\) is a constant, has roots \(\alpha , \beta , \gamma\).
  1. Find a cubic equation whose roots are \(\alpha ^ { 3 } , \beta ^ { 3 } , \gamma ^ { 3 }\).
  2. Show that \(\alpha ^ { 6 } + \beta ^ { 6 } + \gamma ^ { 6 } = 3 - 2 c ^ { 3 }\).
  3. Find the real value of \(c\) for which the matrix \(\left( \begin{array} { c c c } 1 & \alpha ^ { 3 } & \beta ^ { 3 }
    \alpha ^ { 3 } & 1 & \gamma ^ { 3 }
    \beta ^ { 3 } & \gamma ^ { 3 } & 1 \end{array} \right)\) is singular.
Question 4
View details
4 The points \(A , B , C\) have position vectors $$- \mathbf { i } + \mathbf { j } + 2 \mathbf { k } , \quad - 2 \mathbf { i } - \mathbf { j } , \quad 2 \mathbf { i } + 2 \mathbf { k } ,$$ respectively, relative to the origin \(O\).
  1. Find the equation of the plane \(A B C\), giving your answer in the form \(a x + b y + c z = d\).
  2. Find the perpendicular distance from \(O\) to the plane \(A B C\).
  3. Find the acute angle between the planes \(O A B\) and \(A B C\).
Question 5
View details
5 Prove by mathematical induction that, for every positive integer \(n\), $$\frac { d ^ { 2 n - 1 } } { d x ^ { 2 n - 1 } } ( x \sin x ) = ( - 1 ) ^ { n - 1 } ( x \cos x + ( 2 n - 1 ) \sin x )$$
Question 6
View details
6 The curve \(C\) has equation \(\mathrm { y } = \frac { \mathrm { x } ^ { 2 } + \mathrm { x } - 1 } { \mathrm { x } - 1 }\).
  1. Find the equations of the asymptotes of \(C\).
  2. Show that there is no point on \(C\) for which \(1 < y < 5\).
  3. Find the coordinates of the intersections of \(C\) with the axes, and sketch \(C\).
  4. Sketch the curve with equation \(\mathrm { y } = \left| \frac { \mathrm { x } ^ { 2 } + \mathrm { x } - 1 } { \mathrm { x } - 1 } \right|\).
Question 7
View details
7
  1. Show that the curve with Cartesian equation $$\left( x ^ { 2 } + y ^ { 2 } \right) ^ { \frac { 5 } { 2 } } = 4 x y \left( x ^ { 2 } - y ^ { 2 } \right)$$ has polar equation \(r = \sin 4 \theta\).
    The curve \(C\) has polar equation \(r = \sin 4 \theta\), for \(0 \leqslant \theta \leqslant \frac { 1 } { 4 } \pi\).
  2. Sketch \(C\) and state the equation of the line of symmetry.
  3. Find the exact value of the area of the region enclosed by \(C\).
  4. Using the identity \(\sin 4 \theta \equiv 4 \sin \theta \cos ^ { 3 } \theta - 4 \sin ^ { 3 } \theta \cos \theta\), find the maximum distance of \(C\) from the line \(\theta = \frac { 1 } { 2 } \pi\). Give your answer correct to 2 decimal places.
    If you use the following lined page to complete the answer(s) to any question(s), the question number(s) must be clearly shown.