OCR MEI M1 (Mechanics 1) 2009 June

Question 1
View details
1 The velocity-time graph shown in Fig. 1 represents the straight line motion of a toy car. All the lines on the graph are straight. \begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{d6e78f93-ac2c-4053-87e4-5e5537d6dc3d-2_579_1317_443_413} \captionsetup{labelformat=empty} \caption{Fig. 1}
\end{figure} The car starts at the point A at \(t = 0\) and in the next 8 seconds moves to a point B .
  1. Find the distance from A to B .
    \(T\) seconds after leaving A, the car is at a point C which is a distance of 10 m from B .
  2. Find the value of \(T\).
  3. Find the displacement from A to C .
Question 2
View details
2 A small box has weight \(\mathbf { W } \mathrm { N }\) and is held in equilibrium by two strings with tensions \(\mathbf { T } _ { 1 } \mathrm {~N}\) and \(\mathbf { T } _ { 2 } \mathrm {~N}\). This situation is shown in Fig. 2 which also shows the standard unit vectors \(\mathbf { i }\) and \(\mathbf { j }\) that are horizontal and vertically upwards, respectively. \begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{d6e78f93-ac2c-4053-87e4-5e5537d6dc3d-2_259_629_1795_758} \captionsetup{labelformat=empty} \caption{Fig. 2}
\end{figure} The tension \(\mathbf { T } _ { 1 }\) is \(10 \mathbf { i } + 24 \mathbf { j }\).
  1. Calculate the magnitude of \(\mathbf { T } _ { 1 }\) and the angle between \(\mathbf { T } _ { 1 }\) and the vertical. The magnitude of the weight is \(w \mathrm {~N}\).
  2. Write down the vector \(\mathbf { W }\) in terms of \(w\) and \(\mathbf { j }\). The tension \(\mathbf { T } _ { 2 }\) is \(k \mathbf { i } + 10 \mathbf { j }\), where \(k\) is a scalar.
  3. Find the values of \(k\) and of \(w\).
Question 3
View details
3 Fig. 3 is a sketch of the velocity-time graph modelling the velocity of a sprinter at the start of a race. \begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{d6e78f93-ac2c-4053-87e4-5e5537d6dc3d-3_588_1091_351_529} \captionsetup{labelformat=empty} \caption{Fig. 3}
\end{figure}
  1. How can you tell from the sketch that the acceleration is not modelled as being constant for \(0 \leqslant t \leqslant 4\) ? The velocity of the sprinter, \(v \mathrm {~m} \mathrm {~s} ^ { - 1 }\), for the time interval \(0 \leqslant t \leqslant 4\) is modelled by the expression $$v = 3 t - \frac { 3 } { 8 } t ^ { 2 }$$
  2. Find the acceleration that the model predicts for \(t = 4\) and comment on what this suggests about the running of the sprinter.
  3. Calculate the distance run by the sprinter from \(t = 1\) to \(t = 4\).
Question 4
View details
4 Fig. 4 shows a particle projected over horizontal ground from a point O at ground level. The particle initially has a speed of \(32 \mathrm {~m} \mathrm {~s} ^ { - 1 }\) at an angle \(\alpha\) to the horizontal. The particle is a horizontal distance of 44.8 m from O after 5 seconds. Air resistance should be neglected. \begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{d6e78f93-ac2c-4053-87e4-5e5537d6dc3d-4_570_757_447_694} \captionsetup{labelformat=empty} \caption{Fig. 4}
\end{figure}
  1. Write down an expression, in terms of \(\alpha\) and \(t\), for the horizontal distance of the particle from O at time \(t\) seconds after it is projected.
  2. Show that \(\cos \alpha = 0.28\).
  3. Calculate the greatest height reached by the particle.
Question 5
View details
5 The position vector of a toy boat of mass 1.5 kg is modelled as \(\mathbf { r } = ( 2 + t ) \mathbf { i } + \left( 3 t - t ^ { 2 } \right) \mathbf { j }\) where lengths are in metres, \(t\) is the time in seconds, \(\mathbf { i }\) and \(\mathbf { j }\) are horizontal, perpendicular unit vectors and the origin is O .
  1. Find the velocity of the boat when \(t = 4\).
  2. Find the acceleration of the boat and the horizontal force acting on the boat.
  3. Find the cartesian equation of the path of the boat referred to \(x\) - and \(y\)-axes in the directions of \(\mathbf { i }\) and \(\mathbf { j }\), respectively, with origin O . You are not required to simplify your answer. Section B (36 marks)
Question 6
View details
6 An empty open box of mass 4 kg is on a plane that is inclined at \(25 ^ { \circ }\) to the horizontal.
In one model the plane is taken to be smooth.
The box is held in equilibrium by a string with tension \(T \mathrm {~N}\) parallel to the plane, as shown in Fig. 6.1. \begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{d6e78f93-ac2c-4053-87e4-5e5537d6dc3d-5_314_575_621_785} \captionsetup{labelformat=empty} \caption{Fig. 6.1}
\end{figure}
  1. Calculate \(T\). A rock of mass \(m \mathrm {~kg}\) is now put in the box. The system is in equilibrium when the tension in the string, still parallel to the plane, is 50 N .
  2. Find \(m\). In a refined model the plane is rough.
    The empty box, of mass 4 kg , is in equilibrium when a frictional force of 20 N acts down the plane and the string has a tension of \(P \mathrm {~N}\) inclined at \(15 ^ { \circ }\) to the plane, as shown in Fig. 6.2. \begin{figure}[h]
    \includegraphics[alt={},max width=\textwidth]{d6e78f93-ac2c-4053-87e4-5e5537d6dc3d-5_369_561_1653_790} \captionsetup{labelformat=empty} \caption{Fig. 6.2}
    \end{figure}
  3. Draw a diagram showing all the forces acting on the box.
  4. Calculate \(P\).
  5. Calculate the normal reaction of the plane on the box.