CAIE Further Paper 1 (Further Paper 1) 2021 June

Question 1
View details
1 Prove by mathematical induction that \(2 ^ { 4 n } + 31 ^ { n } - 2\) is divisible by 15 for all positive integers \(n\).
Question 2
View details
2
  1. Use standard results from the List of formulae (MF19) to find \(\sum _ { \mathrm { r } = 1 } ^ { \mathrm { n } } \left( 1 - \mathrm { r } - \mathrm { r } ^ { 2 } \right)\) in terms of \(n\),
    simplifying your answer. simplifying your answer.
  2. Show that $$\frac { 1 - r - r ^ { 2 } } { \left( r ^ { 2 } + 2 r + 2 \right) \left( r ^ { 2 } + 1 \right) } = \frac { r + 1 } { ( r + 1 ) ^ { 2 } + 1 } - \frac { r } { r ^ { 2 } + 1 }$$ and hence use the method of differences to find \(\sum _ { r = 1 } ^ { n } \frac { 1 - r - r ^ { 2 } } { \left( r ^ { 2 } + 2 r + 2 \right) \left( r ^ { 2 } + 1 \right) }\).
  3. Deduce the value of \(\sum _ { r = 1 } ^ { \infty } \frac { 1 - r - r ^ { 2 } } { \left( r ^ { 2 } + 2 r + 2 \right) \left( r ^ { 2 } + 1 \right) }\).
Question 3 4 marks
View details
3 The equation \(x ^ { 4 } - 2 x ^ { 3 } - 1 = 0\) has roots \(\alpha , \beta , \gamma , \delta\).
  1. Find a quartic equation whose roots are \(\alpha ^ { 3 } , \beta ^ { 3 } , \gamma ^ { 3 } , \delta ^ { 3 }\) and state the value of \(\alpha ^ { 3 } + \beta ^ { 3 } + \gamma ^ { 3 } + \delta ^ { 3 }\). [4]
  2. Find the value of \(\frac { 1 } { \alpha ^ { 3 } } + \frac { 1 } { \beta ^ { 3 } } + \frac { 1 } { \gamma ^ { 3 } } + \frac { 1 } { \delta ^ { 3 } }\).
  3. Find the value of \(\alpha ^ { 4 } + \beta ^ { 4 } + \gamma ^ { 4 } + \delta ^ { 4 }\).
Question 4
View details
4 The matrix \(\mathbf { M }\) represents the sequence of two transformations in the \(x - y\) plane given by a rotation of \(60 ^ { \circ }\) anticlockwise about the origin followed by a one-way stretch in the \(x\)-direction, scale factor \(d ( d \neq 0 )\).
  1. Find \(\mathbf { M }\) in terms of \(d\).
  2. The unit square in the \(x - y\) plane is transformed by \(\mathbf { M }\) onto a parallelogram of area \(\frac { 1 } { 2 } d ^ { 2 }\) units \({ } ^ { 2 }\). Show that \(d = 2\).
    The matrix \(\mathbf { N }\) is such that \(\mathbf { M N } = \left( \begin{array} { l l } 1 & 1
    \frac { 1 } { 2 } & \frac { 1 } { 2 } \end{array} \right)\).
  3. Find \(\mathbf { N }\).
  4. Find the equations of the invariant lines, through the origin, of the transformation in the \(x - y\) plane represented by \(\mathbf { M N }\).
Question 5
View details
5 The curve \(C\) has polar equation \(r = \operatorname { acot } \left( \frac { 1 } { 3 } \pi - \theta \right)\), where \(a\) is a positive constant and \(0 \leqslant \theta \leqslant \frac { 1 } { 6 } \pi\). It is given that the greatest distance of a point on \(C\) from the pole is \(2 \sqrt { 3 }\).
  1. Sketch \(C\) and show that \(a = 2\).
  2. Find the exact value of the area of the region bounded by \(C\), the initial line and the half-line \(\theta = \frac { 1 } { 6 } \pi\).
  3. Show that \(C\) has Cartesian equation \(2 ( x + y \sqrt { 3 } ) = ( x \sqrt { 3 } - y ) \sqrt { x ^ { 2 } + y ^ { 2 } }\).
Question 6
View details
6 Let \(t\) be a positive constant.
The line \(l _ { 1 }\) passes through the point with position vector \(t \mathbf { i } + \mathbf { j }\) and is parallel to the vector \(- 2 \mathbf { i } - \mathbf { j }\). The line \(l _ { 2 }\) passes through the point with position vector \(\mathbf { j } + t \mathbf { k }\) and is parallel to the vector \(- 2 \mathbf { j } + \mathbf { k }\). It is given that the shortest distance between the lines \(l _ { 1 }\) and \(l _ { 2 }\) is \(\sqrt { \mathbf { 2 1 } }\).
  1. Find the value of \(t\).
    The plane \(\Pi _ { 1 }\) contains \(l _ { 1 }\) and is parallel to \(l _ { 2 }\).
  2. Write down an equation of \(\Pi _ { 1 }\), giving your answer in the form \(\mathbf { r } = \mathbf { a } + \lambda \mathbf { b } + \mu \mathbf { c }\).
    The plane \(\Pi _ { 2 }\) has Cartesian equation \(5 x - 6 y + 7 z = 0\).
  3. Find the acute angle between \(l _ { 2 }\) and \(\Pi _ { 2 }\).
  4. Find the acute angle between \(\Pi _ { 1 }\) and \(\Pi _ { 2 }\).
Question 7
View details
7 The curve \(C\) has equation \(\mathrm { y } = \frac { \mathrm { x } ^ { 2 } + \mathrm { x } + 9 } { \mathrm { x } + 1 }\).
  1. Find the equations of the asymptotes of \(C\).
  2. Find the coordinates of the stationary points on \(C\).
  3. Sketch \(C\), stating the coordinates of any intersections with the axes.
  4. Sketch the curve with equation \(\mathrm { y } = \left| \frac { \mathrm { x } ^ { 2 } + \mathrm { x } + 9 } { \mathrm { x } + 1 } \right|\) and find the set of values of \(x\) for which \(2 \left| x ^ { 2 } + x + 9 \right| > 13 | x + 1 |\). If you use the following lined page to complete the answer(s) to any question(s), the question number(s) must be clearly shown.