AQA M1 (Mechanics 1) 2008 January

Question 1
View details
1 A crane is used to lift a crate, of mass 70 kg , vertically upwards. As the crate is lifted, it accelerates uniformly from rest, rising 8 metres in 5 seconds.
  1. Show that the acceleration of the crate is \(0.64 \mathrm {~m} \mathrm {~s} ^ { - 2 }\).
  2. The crate is attached to the crane by a single cable. Assume that there is no resistance to the motion of the crate. Find the tension in the cable.
  3. Calculate the average speed of the crate during these 5 seconds.
Question 2
View details
2 The velocity of a ship, relative to the water in which it is moving, is \(8 \mathrm {~m} \mathrm {~s} ^ { - 1 }\) due north. The water is moving due east with a speed of \(U \mathrm {~m} \mathrm {~s} ^ { - 1 }\). The resultant velocity of the ship has magnitude \(10 \mathrm {~m} \mathrm {~s} ^ { - 1 }\).
  1. Find \(U\).
  2. Find the direction of the resultant velocity of the ship. Give your answer as a bearing to the nearest degree.
Question 3
View details
3 A particle, of mass 4 kg , is suspended in equilibrium by two light strings, \(A P\) and \(B P\). The string \(A P\) makes an angle of \(30 ^ { \circ }\) to the horizontal and the other string, \(B P\), is horizontal, as shown in the diagram.
\includegraphics[max width=\textwidth, alt={}, center]{217f0e3e-9d1b-41f1-8299-f56d073fbbeb-2_231_757_1841_639}
  1. Draw and label a diagram to show the forces acting on the particle.
  2. Show that the tension in the string \(A P\) is 78.4 N .
  3. Find the tension in the horizontal string \(B P\).
Question 4
View details
4 Two particles, \(A\) and \(B\), are moving on a horizontal plane when they collide and coalesce to form a single particle. The mass of \(A\) is 5 kg and the mass of \(B\) is 15 kg . Before the collision, the velocity of \(A\) is \(\left[ \begin{array} { c } 2 U
U \end{array} \right] \mathrm { ms } ^ { - 1 }\) and the velocity of \(B\) is \(\left[ \begin{array} { c } V
- 1 \end{array} \right] \mathrm { ms } ^ { - 1 }\). After the collision, the velocity of the combined particle is \(\left[ \begin{array} { l } V
0 \end{array} \right] \mathrm { ms } ^ { - 1 }\).
  1. Find:
    1. \(U\);
    2. \(V\).
  2. Find the speed of \(A\) before the collision.
Question 5
View details
5 A puck, of mass 0.2 kg , is placed on a slope inclined at \(20 ^ { \circ }\) above the horizontal, as shown in the diagram.
\includegraphics[max width=\textwidth, alt={}, center]{217f0e3e-9d1b-41f1-8299-f56d073fbbeb-3_280_773_1249_623} The puck is hit so that initially it moves with a velocity of \(4 \mathrm {~ms} ^ { - 1 }\) directly up the slope.
  1. A simple model assumes that the surface of the slope is smooth.
    1. Show that the acceleration of the puck up the slope is \(- 3.35 \mathrm {~m} \mathrm {~s} ^ { - 2 }\), correct to three significant figures.
    2. Find the distance that the puck will travel before it comes to rest.
    3. What will happen to the puck after it comes to rest? Explain why.
  2. A revised model assumes that the surface is rough and that the coefficient of friction between the puck and the surface is 0.5 .
    1. Show that the magnitude of the friction force acting on the puck during this motion is 0.921 N , correct to three significant figures.
    2. Find the acceleration of the puck up the slope.
    3. What will happen to the puck after it comes to rest in this case? Explain why.
Question 6
View details
6 A tractor, of mass 4000 kg , is used to pull a skip, of mass 1000 kg , over a rough horizontal surface. The tractor is connected to the skip by a rope, which remains taut and horizontal throughout the motion, as shown in the diagram.
\includegraphics[max width=\textwidth, alt={}, center]{217f0e3e-9d1b-41f1-8299-f56d073fbbeb-4_243_880_477_571} Assume that only two horizontal forces act on the tractor. One is a driving force, which has magnitude \(P\) newtons and acts in the direction of motion. The other is the tension in the rope. The coefficient of friction between the skip and the ground is 0.4 .
The tractor and the skip accelerate at \(0.8 \mathrm {~ms} ^ { - 2 }\).
  1. Show that the magnitude of the friction force acting on the skip is 3920 N .
  2. Show that \(P = 7920\).
  3. Find the tension in the rope.
  4. Suppose that, during the motion, the rope is not horizontal, but inclined at a small angle to the horizontal, with the higher end of the rope attached to the tractor, as shown in the diagram.
    \includegraphics[max width=\textwidth, alt={}, center]{217f0e3e-9d1b-41f1-8299-f56d073fbbeb-4_241_880_1665_571} How would the magnitude of the friction force acting on the skip differ from that found in part (a)? Explain why.
Question 7
View details
7 A golfer hits a ball which is on horizontal ground. The ball initially moves with speed \(V \mathrm {~m} \mathrm {~s} ^ { - 1 }\) at an angle of \(40 ^ { \circ }\) above the horizontal. There is a pond further along the horizontal ground. The diagram below shows the initial position of the ball and the position of the pond.
\includegraphics[max width=\textwidth, alt={}, center]{217f0e3e-9d1b-41f1-8299-f56d073fbbeb-5_387_1230_502_395}
  1. State two assumptions that you should make in order to model the motion of the ball.
    (2 marks)
  2. Show that the horizontal distance, in metres, travelled by the ball when it returns to ground level is $$\frac { V ^ { 2 } \sin 40 ^ { \circ } \cos 40 ^ { \circ } } { 4.9 }$$
  3. Find the range of values of \(V\) for which the ball lands in the pond.
Question 8
View details
8 A Jet Ski is at the origin and is travelling due north at \(5 \mathrm {~m} \mathrm {~s} ^ { - 1 }\) when it begins to accelerate uniformly. After accelerating for 40 seconds, it is travelling due east at \(4 \mathrm {~ms} ^ { - 1 }\). The unit vectors \(\mathbf { i }\) and \(\mathbf { j }\) are directed east and north respectively.
  1. Show that the acceleration of the Jet Ski is \(( 0.1 \mathbf { i } - 0.125 \mathbf { j } ) \mathrm { m } \mathrm { s } ^ { - 2 }\).
  2. Find the position vector of the Jet Ski at the end of the 40 second period.
  3. The Jet Ski is travelling southeast \(t\) seconds after it leaves the origin.
    1. Find \(t\).
    2. Find the velocity of the Jet Ski at this time.