6 The continuous random variable \(Y\) has cumulative distribution function given by
$$\mathrm { F } ( y ) = \begin{cases} 0 & y < a ,
1 - \frac { a ^ { 3 } } { y ^ { 3 } } & y \geqslant a , \end{cases}$$
where \(a\) is a positive constant. A random sample of 3 observations, \(Y _ { 1 } , Y _ { 2 } , Y _ { 3 }\), is taken, and the smallest is denoted by \(S\).
- Show that \(\mathrm { P } ( S > s ) = \left( \frac { a } { s } \right) ^ { 9 }\) and hence obtain the probability density function of \(S\).
- Show that \(S\) is not an unbiased estimator of \(a\), and construct an unbiased estimator, \(T _ { 1 }\), based on \(S\).
It is given that \(T _ { 2 }\), where \(T _ { 2 } = \frac { 2 } { 9 } \left( Y _ { 1 } + Y _ { 2 } + Y _ { 3 } \right)\), is another unbiased estimator of \(a\).
- Given that \(\operatorname { Var } ( Y ) = \frac { 3 } { 4 } a ^ { 2 }\) and \(\operatorname { Var } ( S ) = \frac { 9 } { 448 } a ^ { 2 }\), determine which of \(T _ { 1 }\) and \(T _ { 2 }\) is the more efficient estimator.
- The values of \(Y\) for a particular sample are 12.8, 4.5 and 7.0. Find the values of \(T _ { 1 }\) and \(T _ { 2 }\) for this sample, and give a reason, unrelated to efficiency, why \(T _ { 1 }\) gives a better estimate of \(a\) than \(T _ { 2 }\) in this case.