AQA S3 (Statistics 3) 2007 June

Question 1
View details
1 As part of an investigation into the starting salaries of graduates in a European country, the following information was collected.
\multirow{2}{*}{}Starting salary (€)
Sample sizeSample meanSample standard deviation
Science graduates175192687321
Arts graduates225178968205
  1. Stating a necessary assumption about the samples, construct a \(98 \%\) confidence interval for the difference between the mean starting salary of science graduates and that of arts graduates.
  2. What can be concluded from your confidence interval?
Question 2
View details
2 A hill-top monument can be visited by one of three routes: road, funicular railway or cable car. The percentages of visitors using these routes are 25, 35 and 40 respectively. The age distribution, in percentages, of visitors using each route is shown in the table. For example, 15 per cent of visitors using the road were under 18 .
\multirow{2}{*}{}Percentage of visitors using
RoadFunicular railwayCable car
\multirow{3}{*}{Age (years)}Under 18152510
18 to 64806055
Over 6451535
Calculate the probability that a randomly selected visitor:
  1. who used the road is aged 18 or over;
  2. is aged between 18 and 64;
  3. used the funicular railway and is aged over 64;
  4. used the funicular railway, given that the visitor is aged over 64.
Question 3
View details
3 Kutz and Styler are two unisex hair salons. An analysis of a random sample of 150 customers at Kutz shows that 28 per cent are male. An analysis of an independent random sample of 250 customers at Styler shows that 34 per cent are male.
  1. Test, at the \(5 \%\) level of significance, the hypothesis that there is no difference between the proportion of male customers at Kutz and that at Styler.
  2. State, with a reason, the probability of making a Type I error in the test in part (a) if, in fact, the actual difference between the two proportions is 0.05 .
Question 4
View details
4 A machine is used to fill 5-litre plastic containers with vinegar. The volume, in litres, of vinegar in a container filled by the machine may be assumed to be normally distributed with mean \(\mu\) and standard deviation 0.08 . A quality control inspector requires a \(99 \%\) confidence interval for \(\mu\) to be constructed such that it has a width of at most 0.05 litres. Calculate, to the nearest 5, the sample size necessary in order to achieve the inspector's requirement.
Question 5
View details
5 The duration, \(X\) minutes, of a timetabled 1-hour lesson may be assumed to be normally distributed with mean 54 and standard deviation 2. The duration, \(Y\) minutes, of a timetabled \(1 \frac { 1 } { 2 }\)-hour lesson may be assumed to be normally distributed with mean 83 and standard deviation 3. Assuming the durations of lessons to be independent, determine the probability that the total duration of a random sample of three 1 -hour lessons is less than the total duration of a random sample of two \(1 \frac { 1 } { 2 }\)-hour lessons.
(7 marks)
Question 6
View details
6
  1. The random variable \(X\) has a binomial distribution with parameters \(n\) and \(p\).
    1. Prove that \(\mathrm { E } ( X ) = n p\).
    2. Given that \(\mathrm { E } \left( X ^ { 2 } \right) - \mathrm { E } ( X ) = n ( n - 1 ) p ^ { 2 }\), show that \(\operatorname { Var } ( X ) = n p ( 1 - p )\).
    3. Given that \(X\) is found to have a mean of 3 and a variance of 2.97, find values for \(n\) and \(p\).
    4. Hence use a distributional approximation to estimate \(\mathrm { P } ( X > 2 )\).
  2. Dressher is a nationwide chain of stores selling women's clothes. It claims that the probability that a customer who buys clothes from its stores uses a Dressher store card is 0.45 . Assuming this claim to be correct, use a distributional approximation to estimate the probability that, in a random sample of 500 customers who buy clothes from Dressher stores, at least half of them use a Dressher store card.
Question 7
View details
7 In a town, the total number, \(R\), of houses sold during a week by estate agents may be modelled by a Poisson distribution with a mean of 13 . A new housing development is completed in the town. During the first week in which houses on this development are offered for sale by the developer, the estate agents sell a total of 10 houses.
  1. Using the \(10 \%\) level of significance, investigate whether the offer for sale of houses by the developer has resulted in a reduction in the mean value of \(R\).
  2. Determine, for your test in part (a), the critical region for \(R\).
  3. Assuming that the offer for sale of houses on the new housing development has reduced the mean value of \(R\) to 6.5, determine, for a test at the 10\% level of significance, the probability of a Type II error.
    (4 marks)