OCR MEI C4 (Core Mathematics 4)

Question 1
View details
1 Solve the equation \(\frac { 5 x } { 2 x + 1 } - \frac { 3 } { x + 1 } = 1\).
Question 2
View details
2 Express \(\frac { 3 x } { ( 2 - x ) \left( 4 + x ^ { 2 } \right) } \quad\) in partial fractions.
Question 3
View details
3 Solve the equation \(\frac { 4 x } { x + 1 } - \frac { 3 } { 2 x + 1 } = 1\).
Question 4
View details
4 Express \(\frac { 1 } { ( 2 x + 1 ) \left( x ^ { 2 } + 1 \right) }\) in partial fractions.
Question 5
View details
5 Express \(\frac { x } { x ^ { 2 } - 1 } + \frac { 2 } { x + 1 }\) as a single fraction, simplifying your answer.
Question 6
View details
6 Find the first three terms in the binomial expansion of \(\overline { 4 + x }\) in ascending powers of \(x\).
State the set of values of \(x\) for which the expansion is valid.
Question 7 3 marks
View details
7
  1. Express \(\frac { 3 } { ( y - 2 ) ( y + 1 ) }\) in partial fractions.
    [0pt] [3]
  2. Hence, given that \(x\) and \(y\) satisfy the differential equation $$\frac { \mathrm { d } y } { \mathrm {~d} x } = x ^ { 2 } ( y - 2 ) ( y + 1 )$$ show that \(\frac { y - 2 } { y + 1 } = A \mathrm { e } ^ { x ^ { 3 } }\), where \(A\) is a constant.
Question 8
View details
8 Express \(\frac { x } { x ^ { 2 } - 4 } + \frac { 2 } { x + 2 }\) as a single fraction, simplifying your answer.
Question 9
View details
9
  1. Find the first three non-zero terms of the binomial series expansion of \(\frac { 1 } { \sqrt { 1 + 4 x ^ { 2 } } }\), and state the set of values of \(x\) for which the expansion is valid.
  2. Hence find the first three non-zero terms of the series expansion of \(\frac { 1 - x ^ { 2 } } { \sqrt { 1 + 4 x ^ { 2 } } }\).
Question 10
View details
10 Two students are trying to evaluate the integral \(\int _ { 1 } ^ { 2 } \sqrt { 1 + \mathrm { e } ^ { - x } } \mathrm {~d} x\).
Sarah uses the trapezium rule with 2 strips, and starts by constructing the following table.
\(x\)11.52
\(\sqrt { 1 + \mathrm { e } ^ { - x } }\)1.16961.10601.0655
  1. Complete the calculation, giving your answer to 3 significant figures. Anish uses a binomial approximation for \(\sqrt { 1 + \mathrm { e } ^ { - x } }\) and then integrates this.
  2. Show that, provided \(\mathrm { e } ^ { - x }\) is suitably small, \(\left( 1 + \mathrm { e } ^ { - x } \right) ^ { \frac { 1 } { 2 } } \approx 1 + \frac { 1 } { 2 } \mathrm { e } ^ { - x } \quad \frac { 1 } { 8 } \mathrm { e } ^ { - 2 x }\).
  3. Use this result to evaluate \(\int _ { 1 } ^ { 2 } \sqrt { 1 + \mathrm { e } ^ { - x } } \mathrm {~d} x\) approximately, giving your answer to 3 significant figures.