OCR C4 (Core Mathematics 4)

Question 1
View details
  1. Express
$$\frac { x - 10 } { ( x - 3 ) ( x + 4 ) } - \frac { x - 8 } { ( x - 3 ) ( 2 x - 1 ) }$$ as a single fraction in its simplest form.
Question 2
View details
2. (i) Expand \(( 1 + 4 x ) ^ { \frac { 3 } { 2 } }\) in ascending powers of \(x\) up to and including the term in \(x ^ { 3 }\), simplifying each coefficient.
(ii) State the set of values of \(x\) for which your expansion is valid.
Question 3
View details
3. A curve has the equation $$3 x ^ { 2 } + x y - 2 y ^ { 2 } + 25 = 0$$ Find an equation for the normal to the curve at the point with coordinates \(( 1,4 )\), giving your answer in the form \(a x + b y + c = 0\), where \(a , b\) and \(c\) are integers.
Question 4
View details
4. The line \(l _ { 1 }\) passes through the points \(P\) and \(Q\) with position vectors ( \(- \mathbf { i } - 8 \mathbf { j } + 3 \mathbf { k }\) ) and ( \(2 \mathbf { i } - 9 \mathbf { j } + \mathbf { k }\) ) respectively, relative to a fixed origin.
  1. Find a vector equation for \(l _ { 1 }\). The line \(l _ { 2 }\) has the equation $$\mathbf { r } = ( 6 \mathbf { i } + a \mathbf { j } + b \mathbf { k } ) + t ( \mathbf { i } + 4 \mathbf { j } - \mathbf { k } )$$ and also passes through the point \(Q\).
  2. Find the values of the constants \(a\) and \(b\).
  3. Find, in degrees to 1 decimal place, the acute angle between lines \(l _ { 1 }\) and \(l _ { 2 }\).
Question 5
View details
5. (i) Given that $$x = \sec \frac { y } { 2 } , \quad 0 \leq y < \pi$$ show that $$\frac { \mathrm { d } y } { \mathrm {~d} x } = \frac { 2 } { x \sqrt { x ^ { 2 } - 1 } }$$ (ii) Find an equation for the tangent to the curve \(y = \sqrt { 3 + 2 \cos x }\) at the point where \(x = \frac { \pi } { 3 }\).
Question 6
View details
6. A curve has parametric equations $$x = \frac { t } { 2 - t } , \quad y = \frac { 1 } { 1 + t } , \quad - 1 < t < 2$$
  1. Show that \(\frac { \mathrm { d } y } { \mathrm {~d} x } = - \frac { 1 } { 2 } \left( \frac { 2 - t } { 1 + t } \right) ^ { 2 }\).
  2. Find an equation for the normal to the curve at the point where \(t = 1\).
  3. Show that the cartesian equation of the curve can be written in the form $$y = \frac { 1 + x } { 1 + 3 x }$$
Question 7
View details
  1. (i) Find
$$\int x ^ { 2 } \sin x \mathrm {~d} x$$ (ii) Use the substitution \(u = 1 + \sin x\) to find the value of $$\int _ { 0 } ^ { \frac { \pi } { 2 } } \cos x ( 1 + \sin x ) ^ { 3 } d x$$
Question 8
View details
8.
\includegraphics[max width=\textwidth, alt={}]{72221d03-8a4e-49d6-b5f9-cdcb4c9cbf1a-3_252_757_267_484}
The diagram shows a hemispherical bowl of radius 5 cm . The bowl is filled with water but the water leaks from a hole at the base of the bowl. At time \(t\) minutes, the depth of water is \(h \mathrm {~cm}\) and the volume of water in the bowl is \(V \mathrm {~cm} ^ { 3 }\), where $$V = \frac { 1 } { 3 } \pi h ^ { 2 } ( 15 - h ) .$$ In a model it is assumed that the rate at which the volume of water in the bowl decreases is proportional to \(V\).
  1. Show that $$\frac { \mathrm { d } h } { \mathrm {~d} t } = - \frac { k h ( 15 - h ) } { 3 ( 10 - h ) } ,$$ where \(k\) is a positive constant.
  2. Express \(\frac { 3 ( 10 - h ) } { h ( 15 - h ) }\) in partial fractions. Given that when \(t = 0 , h = 5\),
  3. show that $$h ^ { 2 } ( 15 - h ) = 250 \mathrm { e } ^ { - k t } .$$ Given also that when \(t = 2 , h = 4\),
  4. find the value of \(k\) to 3 significant figures.