OCR MEI C4 (Core Mathematics 4) 2013 January

Question 2
View details
2 Find the first four terms of the binomial expansion of \(\sqrt [ 3 ] { 1 - 2 x }\). State the set of values of \(x\) for which the expansion is valid.
Question 3
View details
3 The parametric equations of a curve are $$x = \sin \theta , \quad y = \sin 2 \theta , \quad \text { for } 0 \leqslant \theta \leqslant 2 \pi .$$
  1. Find the exact value of the gradient of the curve at the point where \(\theta = \frac { 1 } { 6 } \pi\).
  2. Show that the cartesian equation of the curve is \(y ^ { 2 } = 4 x ^ { 2 } - 4 x ^ { 4 }\).
Question 4
View details
4 Fig. 4 shows the curve \(y = \sqrt { 1 + \mathrm { e } ^ { 2 x } }\), and the region between the curve, the \(x\)-axis, the \(y\)-axis and the line \(x = 2\). \begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{9bceee25-35bd-448b-a4a2-1a5667be5f11-02_650_727_1176_653} \captionsetup{labelformat=empty} \caption{Fig. 4}
\end{figure}
  1. Find the exact volume of revolution when the shaded region is rotated through \(360 ^ { \circ }\) about the \(x\)-axis.
    1. Complete the table of values, and use the trapezium rule with 4 strips to estimate the area of the shaded region.
      \(x\)00.511.52
      \(y\)1.92832.89644.5919
    2. The trapezium rule for \(\int _ { 0 } ^ { 2 } \sqrt { 1 + \mathrm { e } ^ { 2 x } } \mathrm {~d} x\) with 8 and 16 strips gives 6.797 and 6.823, although not necessarily in that order. Without doing the calculations, say which result is which, explaining your reasoning.
Question 5
View details
5 Solve the equation \(2 \sec ^ { 2 } \theta = 5 \tan \theta\), for \(0 \leqslant \theta \leqslant \pi\).
Question 6
View details
6 In Fig. 6, \(\mathrm { ABC } , \mathrm { ACD }\) and AED are right-angled triangles and \(\mathrm { BC } = 1\) unit. Angles CAB and CAD are \(\theta\) and \(\phi\) respectively. \begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{9bceee25-35bd-448b-a4a2-1a5667be5f11-03_440_524_504_753} \captionsetup{labelformat=empty} \caption{Fig. 6}
\end{figure}
  1. Find AC and AD in terms of \(\theta\) and \(\phi\).
  2. Hence show that \(\mathrm { DE } = 1 + \frac { \tan \phi } { \tan \theta }\). Section B (36 marks)
Question 7
View details
7 A tent has vertices ABCDEF with coordinates as shown in Fig. 7. Lengths are in metres. The \(\mathrm { O } x y\) plane is horizontal. \begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{9bceee25-35bd-448b-a4a2-1a5667be5f11-03_547_987_1580_539} \captionsetup{labelformat=empty} \caption{Fig. 7}
\end{figure}
  1. Find the length of the ridge of the tent DE , and the angle this makes with the horizontal.
  2. Show that the vector \(\mathbf { i } - 4 \mathbf { j } + 5 \mathbf { k }\) is normal to the plane through \(\mathrm { A } , \mathrm { D }\) and E . Hence find the equation of this plane. Given that B lies in this plane, find \(a\).
  3. Verify that the equation of the plane BCD is \(x + z = 8\). Hence find the acute angle between the planes ABDE and BCD .
Question 8 1 marks
View details
8 The growth of a tree is modelled by the differential equation $$10 \frac { \mathrm {~d} h } { \mathrm {~d} t } = 20 - h ,$$ where \(h\) is its height in metres and the time \(t\) is in years. It is assumed that the tree is grown from seed, so that \(h = 0\) when \(t = 0\).
  1. Write down the value of \(h\) for which \(\frac { \mathrm { d } h } { \mathrm {~d} t } = 0\), and interpret this in terms of the growth of the tree.
  2. Verify that \(h = 20 \left( 1 - \mathrm { e } ^ { - 0.1 t } \right)\) satisfies this differential equation and its initial condition. The alternative differential equation $$200 \frac { \mathrm {~d} h } { \mathrm {~d} t } = 400 - h ^ { 2 }$$ is proposed to model the growth of the tree. As before, \(h = 0\) when \(t = 0\).
  3. Using partial fractions, show by integration that the solution to the alternative differential equation is $$h = \frac { 20 \left( 1 - \mathrm { e } ^ { - 0.2 t } \right) } { 1 + \mathrm { e } ^ { - 0.2 t } } .$$
  4. What does this solution indicate about the long-term height of the tree?
  5. After a year, the tree has grown to a height of 2 m . Which model fits this information better?