OCR MEI C4 (Core Mathematics 4) 2010 January

Question 1
View details
1 Find the first three terms in the binomial expansion of \(\frac { 1 + 2 x } { ( 1 - 2 x ) ^ { 2 } }\) in ascending powers of \(x\). State the set of values of \(x\) for which the expansion is valid.
Question 2
View details
2 Show that \(\cot 2 \theta = \frac { 1 - \tan ^ { 2 } \theta } { 2 \tan \theta }\).
Hence solve the equation $$\cot 2 \theta = 1 + \tan \theta \quad \text { for } 0 ^ { \circ } < \theta < 360 ^ { \circ }$$
Question 3
View details
3 A curve has parametric equations $$x = \mathrm { e } ^ { 2 t } , \quad y = \frac { 2 t } { 1 + t }$$
  1. Find the gradient of the curve at the point where \(t = 0\).
  2. Find \(y\) in terms of \(x\).
Question 4
View details
4 The points A , B and C have coordinates \(( 1,3 , - 2 ) , ( - 1,2 , - 3 )\) and \(( 0 , - 8,1 )\) respectively.
  1. Find the vectors \(\overrightarrow { \mathrm { AB } }\) and \(\overrightarrow { \mathrm { AC } }\).
  2. Show that the vector \(2 \mathbf { i } - \mathbf { j } - 3 \mathbf { k }\) is perpendicular to the plane ABC . Hence find the equation of the plane ABC .
Question 5
View details
5
  1. Verify that the lines \(\mathbf { r } = \left( \begin{array} { r } - 5
    3
    4 \end{array} \right) + \lambda \left( \begin{array} { r } 3
    0
    - 1 \end{array} \right)\) and \(\mathbf { r } = \left( \begin{array} { r } - 1
    4
    2 \end{array} \right) + \mu \left( \begin{array} { r } 2
    - 1
    0 \end{array} \right)\) meet at the point (1,3,2).
  2. Find the acute angle between the lines.
Question 6
View details
6 In Fig. 6, OAB is a thin bent rod, with \(\mathrm { OA } = a\) metres, \(\mathrm { AB } = b\) metres and angle \(\mathrm { OAB } = 120 ^ { \circ }\). The bent rod lies in a vertical plane. OA makes an angle \(\theta\) above the horizontal. The vertical height BD of B above O is \(h\) metres. The horizontal through A meets BD at C and the vertical through A meets OD at E . \begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{26b3b9fb-7d20-4c8d-ba15-89920534c53a-3_433_899_568_625} \captionsetup{labelformat=empty} \caption{Fig. 6}
\end{figure}
  1. Find angle BAC in terms of \(\theta\). Hence show that $$h = a \sin \theta + b \sin \left( \theta - 60 ^ { \circ } \right) .$$
  2. Hence show that \(h = \left( a + \frac { 1 } { 2 } b \right) \sin \theta - \frac { \sqrt { 3 } } { 2 } b \cos \theta\). The rod now rotates about O , so that \(\theta\) varies. You may assume that the formulae for \(h\) in parts (i) and (ii) remain valid.
  3. Show that OB is horizontal when \(\tan \theta = \frac { \sqrt { 3 } b } { 2 a + b }\). In the case when \(a = 1\) and \(b = 2 , h = 2 \sin \theta - \sqrt { 3 } \cos \theta\).
  4. Express \(2 \sin \theta - \sqrt { 3 } \cos \theta\) in the form \(R \sin ( \theta - \alpha )\). Hence, for this case, write down the maximum value of \(h\) and the corresponding value of \(\theta\).
Question 7
View details
7 Fig. 7 illustrates the growth of a population with time. The proportion of the ultimate (long term) population is denoted by \(x\), and the time in years by \(t\). When \(t = 0 , x = 0.5\), and as \(t\) increases, \(x\) approaches 1 . \begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{26b3b9fb-7d20-4c8d-ba15-89920534c53a-4_599_937_429_605} \captionsetup{labelformat=empty} \caption{Fig. 7}
\end{figure} One model for this situation is given by the differential equation $$\frac { \mathrm { d } x } { \mathrm {~d} t } = x ( 1 - x )$$
  1. Verify that \(x = \frac { 1 } { 1 + \mathrm { e } ^ { - t } }\) satisfies this differential equation, including the initial condition.
  2. Find how long it will take, according to this model, for the population to reach three-quarters of its ultimate value. An alternative model for this situation is given by the differential equation $$\frac { \mathrm { d } x } { \mathrm {~d} t } = x ^ { 2 } ( 1 - x ) ,$$ with \(x = 0.5\) when \(t = 0\) as before.
  3. Find constants \(A , B\) and \(C\) such that \(\frac { 1 } { x ^ { 2 } ( 1 - x ) } = \frac { A } { x ^ { 2 } } + \frac { B } { x } + \frac { C } { 1 - x }\).
  4. Hence show that \(t = 2 + \ln \left( \frac { x } { 1 - x } \right) - \frac { 1 } { x }\).
  5. Find how long it will take, according to this model, for the population to reach three-quarters of its ultimate value.
Question 8
View details
8 A passage of plaintext is encoded by using the Caesar cipher corresponding to a shift of 2 places followed by the Vigenere cipher with keyword ODE.
  1. The first letter in the plaintext passage is \(F\). Show that the first letter in the transmitted text is \(V\).
  2. The first four letters in the transmitted text are VFIU. What are the first four letters in the plaintext passage?
  3. The 800th letter in the transmitted text is \(W\). What is the 800th letter in the plaintext passage?