OCR MEI C4 (Core Mathematics 4) 2008 January

Question 1
View details
1 Express \(3 \cos \theta + 4 \sin \theta\) in the form \(R \cos ( \theta - \alpha )\), where \(R > 0\) and \(0 < \alpha < \frac { 1 } { 2 } \pi\).
Hence solve the equation \(3 \cos \theta + 4 \sin \theta = 2\) for \(- \pi \leqslant \theta \leqslant \pi\).
Question 2
View details
2
  1. Find the first three terms in the binomial expansion of \(\frac { 1 } { \sqrt { 1 - 2 x } }\). State the set of values of \(x\) for which the expansion is valid.
  2. Hence find the first three terms in the series expansion of \(\frac { 1 + 2 x } { \sqrt { 1 - 2 x } }\).
Question 3
View details
3 Fig. 3 shows part of the curve \(y = 1 + x ^ { 2 }\), together with the line \(y = 2\). \begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{9a8332ec-2216-4e1f-9768-ef175c9e159b-2_568_721_1034_712} \captionsetup{labelformat=empty} \caption{Fig. 3}
\end{figure} The region enclosed by the curve, the \(y\)-axis and the line \(y = 2\) is rotated through \(360 ^ { \circ }\) about the \(y\)-axis. Find the volume of the solid generated, giving your answer in terms of \(\pi\).
Question 4
View details
4 The angle \(\theta\) satisfies the equation \(\sin \left( \theta + 45 ^ { \circ } \right) = \cos \theta\).
  1. Using the exact values of \(\sin 45 ^ { \circ }\) and \(\cos 45 ^ { \circ }\), show that \(\tan \theta = \sqrt { 2 } - 1\).
  2. Find the values of \(\theta\) for \(0 ^ { \circ } < \theta < 360 ^ { \circ }\).
Question 5
View details
5 Express \(\frac { 4 } { x \left( x ^ { 2 } + 4 \right) }\) in partial fractions.
Question 6
View details
6 Solve the equation \(\operatorname { cosec } \theta = 3\), for \(0 ^ { \circ } < \theta < 360 ^ { \circ }\).
Question 7
View details
7 A glass ornament OABCDEFG is a truncated pyramid on a rectangular base (see Fig. 7). All dimensions are in centimetres. \begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{9a8332ec-2216-4e1f-9768-ef175c9e159b-3_632_1102_486_520} \captionsetup{labelformat=empty} \caption{Fig. 7}
\end{figure}
  1. Write down the vectors \(\overrightarrow { \mathrm { CD } }\) and \(\overrightarrow { \mathrm { CB } }\).
  2. Find the length of the edge CD.
  3. Show that the vector \(4 \mathbf { i } + \mathbf { k }\) is perpendicular to the vectors \(\overrightarrow { \mathrm { CD } }\) and \(\overrightarrow { \mathrm { CB } }\). Hence find the cartesian equation of the plane BCDE .
  4. Write down vector equations for the lines OG and AF . Show that they meet at the point P with coordinates (5, 10, 40). You may assume that the lines CD and BE also meet at the point P .
    The volume of a pyramid is \(\frac { 1 } { 3 } \times\) area of base × height.
  5. Find the volumes of the pyramids POABC and PDEFG . Hence find the volume of the ornament.
Question 8
View details
8 A curve has equation $$x ^ { 2 } + 4 y ^ { 2 } = k ^ { 2 } ,$$ where \(k\) is a positive constant.
  1. Verify that $$x = k \cos \theta , \quad y = \frac { 1 } { 2 } k \sin \theta ,$$ are parametric equations for the curve.
  2. Hence or otherwise show that \(\frac { \mathrm { d } y } { \mathrm {~d} x } = - \frac { x } { 4 y }\).
  3. Fig. 8 illustrates the curve for a particular value of \(k\). Write down this value of \(k\). \begin{figure}[h]
    \includegraphics[alt={},max width=\textwidth]{9a8332ec-2216-4e1f-9768-ef175c9e159b-4_657_1071_938_577} \captionsetup{labelformat=empty} \caption{Fig. 8}
    \end{figure}
  4. Copy Fig. 8 and on the same axes sketch the curves for \(k = 1 , k = 3\) and \(k = 4\). On a map, the curves represent the contours of a mountain. A stream flows down the mountain. Its path on the map is always at right angles to the contour it is crossing.
  5. Explain why the path of the stream is modelled by the differential equation $$\frac { \mathrm { d } y } { \mathrm {~d} x } = \frac { 4 y } { x } .$$
  6. Solve this differential equation. Given that the path of the stream passes through the point \(( 2,1 )\), show that its equation is \(y = \frac { x ^ { 4 } } { 16 }\).