CAIE P3 (Pure Mathematics 3) 2007 November

Question 1
View details
1 Find the exact value of the constant \(k\) for which \(\int _ { 1 } ^ { k } \frac { 1 } { 2 x - 1 } \mathrm {~d} x = 1\).
Question 2
View details
2 The polynomial \(x ^ { 4 } + 3 x ^ { 2 } + a\), where \(a\) is a constant, is denoted by \(\mathrm { p } ( x )\). It is given that \(x ^ { 2 } + x + 2\) is a factor of \(\mathrm { p } ( x )\). Find the value of \(a\) and the other quadratic factor of \(\mathrm { p } ( x )\).
Question 3
View details
3 Use integration by parts to show that $$\int _ { 2 } ^ { 4 } \ln x \mathrm {~d} x = 6 \ln 2 - 2$$
Question 4
View details
4 The curve with equation \(y = \mathrm { e } ^ { - x } \sin x\) has one stationary point for which \(0 \leqslant x \leqslant \pi\).
  1. Find the \(x\)-coordinate of this point.
  2. Determine whether this point is a maximum or a minimum point.
Question 5
View details
5
  1. Show that the equation $$\tan \left( 45 ^ { \circ } + x \right) - \tan x = 2$$ can be written in the form $$\tan ^ { 2 } x + 2 \tan x - 1 = 0$$
  2. Hence solve the equation $$\tan \left( 45 ^ { \circ } + x \right) - \tan x = 2$$ giving all solutions in the interval \(0 ^ { \circ } \leqslant x \leqslant 180 ^ { \circ }\).
Question 6
View details
6
  1. By sketching a suitable pair of graphs, show that the equation $$2 - x = \ln x$$ has only one root.
  2. Verify by calculation that this root lies between 1.4 and 1.7.
  3. Show that this root also satisfies the equation $$x = \frac { 1 } { 3 } ( 4 + x - 2 \ln x )$$
  4. Use the iterative formula $$x _ { n + 1 } = \frac { 1 } { 3 } \left( 4 + x _ { n } - 2 \ln x _ { n } \right)$$ with initial value \(x _ { 1 } = 1.5\), to determine this root correct to 2 decimal places. Give the result of each iteration to 4 decimal places.
Question 7
View details
7 The number of insects in a population \(t\) days after the start of observations is denoted by \(N\). The variation in the number of insects is modelled by a differential equation of the form $$\frac { \mathrm { d } N } { \mathrm {~d} t } = k N \cos ( 0.02 t )$$ where \(k\) is a constant and \(N\) is taken to be a continuous variable. It is given that \(N = 125\) when \(t = 0\).
  1. Solve the differential equation, obtaining a relation between \(N , k\) and \(t\).
  2. Given also that \(N = 166\) when \(t = 30\), find the value of \(k\).
  3. Obtain an expression for \(N\) in terms of \(t\), and find the least value of \(N\) predicted by this model.
Question 8
View details
8
  1. The complex number \(z\) is given by \(z = \frac { 4 - 3 \mathrm { i } } { 1 - 2 \mathrm { i } }\).
    1. Express \(z\) in the form \(x + \mathrm { i } y\), where \(x\) and \(y\) are real.
    2. Find the modulus and argument of \(z\).
  2. Find the two square roots of the complex number 5-12i, giving your answers in the form \(x + \mathrm { i } y\), where \(x\) and \(y\) are real.
Question 9
View details
9
  1. Express \(\frac { 2 - x + 8 x ^ { 2 } } { ( 1 - x ) ( 1 + 2 x ) ( 2 + x ) }\) in partial fractions.
  2. Hence obtain the expansion of \(\frac { 2 - x + 8 x ^ { 2 } } { ( 1 - x ) ( 1 + 2 x ) ( 2 + x ) }\) in ascending powers of \(x\), up to and including the term in \(x ^ { 2 }\).
Question 10
View details
10 The straight line \(l\) has equation \(\mathbf { r } = \mathbf { i } + 6 \mathbf { j } - 3 \mathbf { k } + s ( \mathbf { i } - 2 \mathbf { j } + 2 \mathbf { k } )\). The plane \(p\) has equation \(( \mathbf { r } - 3 \mathbf { i } ) \cdot ( 2 \mathbf { i } - 3 \mathbf { j } + 6 \mathbf { k } ) = 0\). The line \(l\) intersects the plane \(p\) at the point \(A\).
  1. Find the position vector of \(A\).
  2. Find the acute angle between \(l\) and \(p\).
  3. Find a vector equation for the line which lies in \(p\), passes through \(A\) and is perpendicular to \(l\).