2 Points \(A , B\) and \(C\) have position vectors \(- 5 \mathbf { i } - 10 \mathbf { j } + 12 \mathbf { k } , \mathbf { i } + 2 \mathbf { j } - 3 \mathbf { k }\) and \(3 \mathbf { i } + 6 \mathbf { j } + p \mathbf { k }\) respectively, where \(p\) is a constant.
Given that angle \(A B C = 90 ^ { \circ }\), find the value of \(p\).
Given instead that \(A B C\) is a straight line, find the value of \(p\).
Expand \(( 1 + x ) ^ { \frac { 1 } { 3 } }\) in ascending powers of \(x\), up to and including the term in \(x ^ { 2 }\).
(a) Hence, or otherwise, expand \(( 8 + 16 x ) ^ { \frac { 1 } { 3 } }\) in ascending powers of \(x\), up to and including the term in \(x ^ { 2 }\).
(b) State the set of values of \(x\) for which the expansion in part (ii) (a) is valid.
6 A curve has parametric equations
$$x = 9 t - \ln ( 9 t ) , \quad y = t ^ { 3 } - \ln \left( t ^ { 3 } \right)$$
Show that there is only one value of \(t\) for which \(\frac { \mathrm { d } y } { \mathrm {~d} x } = 3\) and state that value.
7 Find the equation of the normal to the curve \(x ^ { 3 } + 2 x ^ { 2 } y = y ^ { 3 } + 15\) at the point \(( 2,1 )\), giving your answer in the form \(a x + b y + c = 0\), where \(a , b\) and \(c\) are integers.
State the derivative of \(\mathrm { e } ^ { \cos x }\).
Hence use integration by parts to find the exact value of
$$\int _ { 0 } ^ { \frac { 1 } { 2 } \pi } \cos x \sin x \mathrm { e } ^ { \cos x } \mathrm {~d} x$$
9 The equation of a straight line \(l\) is \(\mathbf { r } = \left( \begin{array} { l } 3 1 1 \end{array} \right) + t \left( \begin{array} { r } 1 - 1 2 \end{array} \right) . O\) is the origin.
The point \(P\) on \(l\) is given by \(t = 1\). Calculate the acute angle between \(O P\) and \(l\).
Find the position vector of the point \(Q\) on \(l\) such that \(O Q\) is perpendicular to \(l\).
Express \(\frac { 1 } { ( 3 - x ) ( 6 - x ) }\) in partial fractions.
In a chemical reaction, the amount \(x\) grams of a substance at time \(t\) seconds is related to the rate at which \(x\) is changing by the equation
$$\frac { \mathrm { d } x } { \mathrm {~d} t } = k ( 3 - x ) ( 6 - x )$$
where \(k\) is a constant. When \(t = 0 , x = 0\) and when \(t = 1 , x = 1\).
(a) Show that \(k = \frac { 1 } { 3 } \ln \frac { 5 } { 4 }\).
(b) Find the value of \(x\) when \(t = 2\).