3 When \(x ^ { 4 } - 2 x ^ { 3 } - 7 x ^ { 2 } + 7 x + a\) is divided by \(x ^ { 2 } + 2 x - 1\), the quotient is \(x ^ { 2 } + b x + 2\) and the remainder is \(c x + 7\). Find the values of the constants \(a , b\) and \(c\).
4 Find the equation of the normal to the curve
$$x ^ { 3 } + 4 x ^ { 2 } y + y ^ { 3 } = 6$$
at the point \(( 1,1 )\), giving your answer in the form \(a x + b y + c = 0\), where \(a , b\) and \(c\) are integers.
Expand \(( 1 + a x ) ^ { - 4 }\) in ascending powers of \(x\), up to and including the term in \(x ^ { 2 }\).
The coefficients of \(x\) and \(x ^ { 2 }\) in the expansion of \(( 1 + b x ) ( 1 + a x ) ^ { - 4 }\) are 1 and - 2 respectively. Given that \(a > 0\), find the values of \(a\) and \(b\).
Given that
$$A ( \sin \theta + \cos \theta ) + B ( \cos \theta - \sin \theta ) \equiv 4 \sin \theta$$
find the values of the constants \(A\) and \(B\).
Hence find the exact value of
$$\int _ { 0 } ^ { \frac { 1 } { 4 } \pi } \frac { 4 \sin \theta } { \sin \theta + \cos \theta } \mathrm { d } \theta$$
giving your answer in the form \(a \pi - \ln b\).
8 Water flows out of a tank through a hole in the bottom and, at time \(t\) minutes, the depth of water in the tank is \(x\) metres. At any instant, the rate at which the depth of water in the tank is decreasing is proportional to the square root of the depth of water in the tank.
Write down a differential equation which models this situation.
When \(t = 0 , x = 2\); when \(t = 5 , x = 1\). Find \(t\) when \(x = 0.5\), giving your answer correct to 1 decimal place.