OCR C4 (Core Mathematics 4) 2006 January

Question 1
View details
1 Simplify \(\frac { x ^ { 3 } - 3 x ^ { 2 } } { x ^ { 2 } - 9 }\).
Question 2
View details
2 Given that \(\sin y = x y + x ^ { 2 }\), find \(\frac { \mathrm { d } y } { \mathrm {~d} x }\) in terms of \(x\) and \(y\).
Question 3
View details
3
  1. Find the quotient and the remainder when \(3 x ^ { 3 } - 2 x ^ { 2 } + x + 7\) is divided by \(x ^ { 2 } - 2 x + 5\).
  2. Hence, or otherwise, determine the values of the constants \(a\) and \(b\) such that, when \(3 x ^ { 3 } - 2 x ^ { 2 } + a x + b\) is divided by \(x ^ { 2 } - 2 x + 5\), there is no remainder.
Question 4
View details
4
  1. Use integration by parts to find \(\int x \sec ^ { 2 } x \mathrm {~d} x\).
  2. Hence find \(\int x \tan ^ { 2 } x \mathrm {~d} x\).
Question 5
View details
5 A curve is given parametrically by the equations \(x = t ^ { 2 } , y = 2 t\).
  1. Find \(\frac { \mathrm { d } y } { \mathrm {~d} x }\) in terms of \(t\), giving your answer in its simplest form.
  2. Show that the equation of the tangent to the curve at \(\left( p ^ { 2 } , 2 p \right)\) is $$p y = x + p ^ { 2 } .$$
  3. Find the coordinates of the point where the tangent at \(( 9,6 )\) meets the tangent at \(( 25 , - 10 )\).
Question 6
View details
6
  1. Show that the substitution \(x = \sin ^ { 2 } \theta\) transforms \(\int \sqrt { \frac { x } { 1 - x } } \mathrm {~d} x\) to \(\int 2 \sin ^ { 2 } \theta \mathrm {~d} \theta\).
  2. Hence find \(\int _ { 0 } ^ { 1 } \sqrt { \frac { x } { 1 - x } } \mathrm {~d} x\).
Question 7
View details
7 The expression \(\frac { 11 + 8 x } { ( 2 - x ) ( 1 + x ) ^ { 2 } }\) is denoted by \(\mathrm { f } ( x )\).
  1. Express \(\mathrm { f } ( x )\) in the form \(\frac { A } { 2 - x } + \frac { B } { 1 + x } + \frac { C } { ( 1 + x ) ^ { 2 } }\), where \(A , B\) and \(C\) are constants.
  2. Given that \(| x | < 1\), find the first 3 terms in the expansion of \(\mathrm { f } ( x )\) in ascending powers of \(x\).
Question 8
View details
8
  1. Solve the differential equation $$\frac { \mathrm { d } y } { \mathrm {~d} x } = \frac { 2 - x } { y - 3 }$$ giving the particular solution that satisfies the condition \(y = 4\) when \(x = 5\).
  2. Show that this particular solution can be expressed in the form $$( x - a ) ^ { 2 } + ( y - b ) ^ { 2 } = k$$ where the values of the constants \(a , b\) and \(k\) are to be stated.
  3. Hence sketch the graph of the particular solution, indicating clearly its main features.
Question 9
View details
9 Two lines have vector equations $$\mathbf { r } = \left( \begin{array} { r } 4
2
- 6 \end{array} \right) + t \left( \begin{array} { r } - 8
1
- 2 \end{array} \right) \quad \text { and } \quad \mathbf { r } = \left( \begin{array} { r } - 2
a
- 2 \end{array} \right) + s \left( \begin{array} { r } - 9
2
- 5 \end{array} \right) ,$$ where \(a\) is a constant.
  1. Calculate the acute angle between the lines.
  2. Given that these two lines intersect, find \(a\) and the point of intersection.