8 The points \(A\) and \(B\) have position vectors, relative to the origin \(O\), given by \(\overrightarrow { O A } = \mathbf { i } + \mathbf { j } + \mathbf { k }\) and \(\overrightarrow { O B } = 2 \mathbf { i } + 3 \mathbf { k }\). The line \(l\) has vector equation \(\mathbf { r } = 2 \mathbf { i } - 2 \mathbf { j } - \mathbf { k } + \mu ( - \mathbf { i } + 2 \mathbf { j } + \mathbf { k } )\).
- Show that the line passing through \(A\) and \(B\) does not intersect \(l\).
- Show that the length of the perpendicular from \(A\) to \(l\) is \(\frac { 1 } { \sqrt { 2 } }\).