CAIE P3 (Pure Mathematics 3) 2016 June

Question 1
View details
1 Solve the inequality \(2 | x - 2 | > | 3 x + 1 |\).
Question 2
View details
2 The variables \(x\) and \(y\) satisfy the relation \(3 ^ { y } = 4 ^ { 2 - x }\).
  1. By taking logarithms, show that the graph of \(y\) against \(x\) is a straight line. State the exact value of the gradient of this line.
  2. Calculate the exact \(x\)-coordinate of the point of intersection of this line with the line with equation \(y = 2 x\), simplifying your answer.
Question 3
View details
3
  1. Express \(( \sqrt { } 5 ) \cos x + 2 \sin x\) in the form \(R \cos ( x - \alpha )\), where \(R > 0\) and \(0 ^ { \circ } < \alpha < 90 ^ { \circ }\), giving the value of \(\alpha\) correct to 2 decimal places.
  2. Hence solve the equation $$( \sqrt { } 5 ) \cos \frac { 1 } { 2 } x + 2 \sin \frac { 1 } { 2 } x = 1.2$$ for \(0 ^ { \circ } < x < 360 ^ { \circ }\).
Question 4
View details
4 The parametric equations of a curve are $$x = t + \cos t , \quad y = \ln ( 1 + \sin t )$$ where \(- \frac { 1 } { 2 } \pi < t < \frac { 1 } { 2 } \pi\).
  1. Show that \(\frac { \mathrm { d } y } { \mathrm {~d} x } = \sec t\).
  2. Hence find the \(x\)-coordinates of the points on the curve at which the gradient is equal to 3 . Give your answers correct to 3 significant figures.
Question 5
View details
5 The variables \(x\) and \(y\) satisfy the differential equation $$\frac { \mathrm { d } y } { \mathrm {~d} x } = \mathrm { e } ^ { - 2 y } \tan ^ { 2 } x$$ for \(0 \leqslant x < \frac { 1 } { 2 } \pi\), and it is given that \(y = 0\) when \(x = 0\). Solve the differential equation and calculate the value of \(y\) when \(x = \frac { 1 } { 4 } \pi\).
Question 6
View details
6 The curve with equation \(y = x ^ { 2 } \cos \frac { 1 } { 2 } x\) has a stationary point at \(x = p\) in the interval \(0 < x < \pi\).
  1. Show that \(p\) satisfies the equation \(\tan \frac { 1 } { 2 } p = \frac { 4 } { p }\).
  2. Verify by calculation that \(p\) lies between 2 and 2.5.
  3. Use the iterative formula \(p _ { n + 1 } = 2 \tan ^ { - 1 } \left( \frac { 4 } { p _ { n } } \right)\) to determine the value of \(p\) correct to 2 decimal places. Give the result of each iteration to 4 decimal places.
Question 7
View details
7 Let \(I = \int _ { 0 } ^ { 1 } \frac { x ^ { 5 } } { \left( 1 + x ^ { 2 } \right) ^ { 3 } } \mathrm {~d} x\).
  1. Using the substitution \(u = 1 + x ^ { 2 }\), show that \(I = \int _ { 1 } ^ { 2 } \frac { ( u - 1 ) ^ { 2 } } { 2 u ^ { 3 } } \mathrm {~d} u\).
  2. Hence find the exact value of \(I\).
Question 8
View details
8 The points \(A\) and \(B\) have position vectors, relative to the origin \(O\), given by \(\overrightarrow { O A } = \mathbf { i } + \mathbf { j } + \mathbf { k }\) and \(\overrightarrow { O B } = 2 \mathbf { i } + 3 \mathbf { k }\). The line \(l\) has vector equation \(\mathbf { r } = 2 \mathbf { i } - 2 \mathbf { j } - \mathbf { k } + \mu ( - \mathbf { i } + 2 \mathbf { j } + \mathbf { k } )\).
  1. Show that the line passing through \(A\) and \(B\) does not intersect \(l\).
  2. Show that the length of the perpendicular from \(A\) to \(l\) is \(\frac { 1 } { \sqrt { 2 } }\).
Question 9
View details
  1. Sketch this diagram and state fully the geometrical relationship between \(O B\) and \(A C\).
  2. Find, in the form \(x + \mathrm { i } y\), where \(x\) and \(y\) are real, the complex number \(\frac { u } { v }\).
  3. Prove that angle \(A O B = \frac { 3 } { 4 } \pi\).
Question 10
View details
10 Let \(\mathrm { f } ( x ) = \frac { 10 x - 2 x ^ { 2 } } { ( x + 3 ) ( x - 1 ) ^ { 2 } }\).
  1. Express \(\mathrm { f } ( x )\) in partial fractions.
  2. Hence obtain the expansion of \(\mathrm { f } ( x )\) in ascending powers of \(x\), up to and including the term in \(x ^ { 2 }\).