9 The points \(A , B\) and \(C\) have position vectors, relative to the origin \(O\), given by \(\overrightarrow { O A } = \mathbf { i } + 2 \mathbf { j } + 3 \mathbf { k }\), \(\overrightarrow { O B } = 4 \mathbf { j } + \mathbf { k }\) and \(\overrightarrow { O C } = 2 \mathbf { i } + 5 \mathbf { j } - \mathbf { k }\). A fourth point \(D\) is such that the quadrilateral \(A B C D\) is a parallelogram.
- Find the position vector of \(D\) and verify that the parallelogram is a rhombus.
- The plane \(p\) is parallel to \(O A\) and the line \(B C\) lies in \(p\). Find the equation of \(p\), giving your answer in the form \(a x + b y + c z = d\).