9 With respect to the origin \(O\), the points \(A , B , C , D\) have position vectors given by
$$\overrightarrow { O A } = \mathbf { i } + 3 \mathbf { j } + 2 \mathbf { k } , \quad \overrightarrow { O B } = 2 \mathbf { i } + \mathbf { j } - \mathbf { k } , \quad \overrightarrow { O C } = 2 \mathbf { i } + 4 \mathbf { j } + \mathbf { k } , \quad \overrightarrow { O D } = - 3 \mathbf { i } + \mathbf { j } + 2 \mathbf { k }$$
- Find the equation of the plane containing \(A , B\) and \(C\), giving your answer in the form \(a x + b y + c z = d\).
- The line through \(D\) parallel to \(O A\) meets the plane with equation \(x + 2 y - z = 7\) at the point \(P\). Find the position vector of \(P\) and show that the length of \(D P\) is \(2 \sqrt { } ( 14 )\).