CAIE P3 (Pure Mathematics 3) 2012 June

Question 1
View details
1 Solve the equation \(\left| 4 - 2 ^ { x } \right| = 10\), giving your answer correct to 3 significant figures.
Question 2
View details
2
  1. Expand \(\frac { 1 } { \sqrt { } ( 1 - 4 x ) }\) in ascending powers of \(x\), up to and including the term in \(x ^ { 2 }\), simplifying the coefficients.
  2. Hence find the coefficient of \(x ^ { 2 }\) in the expansion of \(\frac { 1 + 2 x } { \sqrt { } ( 4 - 16 x ) }\).
Question 3
View details
3 The polynomial \(\mathrm { p } ( x )\) is defined by $$\mathrm { p } ( x ) = x ^ { 3 } - 3 a x + 4 a$$ where \(a\) is a constant.
  1. Given that \(( x - 2 )\) is a factor of \(\mathrm { p } ( x )\), find the value of \(a\).
  2. When \(a\) has this value,
    (a) factorise \(\mathrm { p } ( x )\) completely,
    (b) find all the roots of the equation \(\mathrm { p } \left( x ^ { 2 } \right) = 0\).
Question 4
View details
4 The complex number \(u\) is defined by \(u = \frac { ( 1 + 2 \mathrm { i } ) ^ { 2 } } { 2 + \mathrm { i } }\).
  1. Without using a calculator and showing your working, express \(u\) in the form \(x + \mathrm { i } y\), where \(x\) and \(y\) are real.
  2. Sketch an Argand diagram showing the locus of the complex number \(z\) such that \(| z - u | = | u |\).
Question 5
View details
5
\includegraphics[max width=\textwidth, alt={}, center]{4c71f68a-efb9-4408-bf03-874e0d4426d5-2_458_807_1786_667} The diagram shows the curve $$y = 8 \sin \frac { 1 } { 2 } x - \tan \frac { 1 } { 2 } x$$ for \(0 \leqslant x < \pi\). The \(x\)-coordinate of the maximum point is \(\alpha\) and the shaded region is enclosed by the curve and the lines \(x = \alpha\) and \(y = 0\).
  1. Show that \(\alpha = \frac { 2 } { 3 } \pi\).
  2. Find the exact value of the area of the shaded region.
Question 6
View details
6 The equation of a curve is \(3 x ^ { 2 } - 4 x y + y ^ { 2 } = 45\).
  1. Find the gradient of the curve at the point \(( 2 , - 3 )\).
  2. Show that there are no points on the curve at which the gradient is 1 .
Question 7
View details
7 The variables \(x\) and \(y\) are related by the differential equation $$\frac { \mathrm { d } y } { \mathrm {~d} x } = \frac { 6 x \mathrm { e } ^ { 3 x } } { y ^ { 2 } } .$$ It is given that \(y = 2\) when \(x = 0\). Solve the differential equation and hence find the value of \(y\) when \(x = 0.5\), giving your answer correct to 2 decimal places.
Question 8
View details
8 The point \(P\) has coordinates \(( - 1,4,11 )\) and the line \(l\) has equation \(\mathbf { r } = \left( \begin{array} { r } 1
3
- 4 \end{array} \right) + \lambda \left( \begin{array} { l } 2
1
3 \end{array} \right)\).
  1. Find the perpendicular distance from \(P\) to \(l\).
  2. Find the equation of the plane which contains \(P\) and \(l\), giving your answer in the form \(a x + b y + c z = d\), where \(a , b , c\) and \(d\) are integers.
Question 9
View details
9 By first expressing \(\frac { 4 x ^ { 2 } + 5 x + 3 } { 2 x ^ { 2 } + 5 x + 2 }\) in partial fractions, show that $$\int _ { 0 } ^ { 4 } \frac { 4 x ^ { 2 } + 5 x + 3 } { 2 x ^ { 2 } + 5 x + 2 } \mathrm {~d} x = 8 - \ln 9$$
Question 10
View details
10
  1. It is given that \(2 \tan 2 x + 5 \tan ^ { 2 } x = 0\). Denoting \(\tan x\) by \(t\), form an equation in \(t\) and hence show that either \(t = 0\) or \(t = \sqrt [ 3 ] { } ( t + 0.8 )\).
  2. It is given that there is exactly one real value of \(t\) satisfying the equation \(t = \sqrt [ 3 ] { } ( t + 0.8 )\). Verify by calculation that this value lies between 1.2 and 1.3 .
  3. Use the iterative formula \(t _ { n + 1 } = \sqrt [ 3 ] { } \left( t _ { n } + 0.8 \right)\) to find the value of \(t\) correct to 3 decimal places. Give the result of each iteration to 5 decimal places.
  4. Using the values of \(t\) found in previous parts of the question, solve the equation $$2 \tan 2 x + 5 \tan ^ { 2 } x = 0$$ for \(- \pi \leqslant x \leqslant \pi\).