Edexcel C3 (Core Mathematics 3)

Question 1
View details
  1. (a) Given that \(\cos x = \sqrt { 3 } - 1\), find the value of \(\cos 2 x\) in the form \(a + b \sqrt { 3 }\), where \(a\) and \(b\) are integers.
    (b) Given that
$$2 \cos ( y + 30 ) ^ { \circ } = \sqrt { 3 } \sin ( y - 30 ) ^ { \circ }$$ find the value of \(\tan y\) in the form \(k \sqrt { 3 }\) where \(k\) is a rational constant.
Question 2
View details
2. The functions \(f\) and \(g\) are defined by $$\begin{aligned} & \mathrm { f } ( x ) \equiv x ^ { 2 } - 3 x + 7 , \quad x \in \mathbb { R }
& \mathrm {~g} ( x ) \equiv 2 x - 1 , \quad x \in \mathbb { R } \end{aligned}$$
  1. Find the range of f .
  2. Evaluate \(\operatorname { gf } ( - 1 )\).
  3. Solve the equation $$\mathrm { fg } ( x ) = 17$$
Question 3
View details
  1. \(f ( x ) = \frac { x ^ { 4 } + x ^ { 3 } - 13 x ^ { 2 } + 26 x - 17 } { x ^ { 2 } - 3 x + 3 } , x \in \mathbb { R }\).
    1. Find the values of the constants \(A\), \(B\), \(C\) and \(D\) such that
    $$f ( x ) = x ^ { 2 } + A x + B + \frac { C x + D } { x ^ { 2 } - 3 x + 3 }$$ The point \(P\) on the curve \(y = \mathrm { f } ( x )\) has \(x\)-coordinate 1.
  2. Show that the normal to the curve \(y = \mathrm { f } ( x )\) at \(P\) has the equation $$x + 5 y + 9 = 0$$
Question 4
View details
  1. (a) Given that
$$x = \sec \frac { y } { 2 } , \quad 0 \leq y < \pi ,$$ show that $$\frac { \mathrm { d } y } { \mathrm {~d} x } = \frac { 2 } { x \sqrt { x ^ { 2 } - 1 } } .$$ (b) Find an equation for the tangent to the curve \(y = \sqrt { 3 + 2 \cos x }\) at the point where \(x = \frac { \pi } { 3 }\).
Question 5
View details
5. $$\mathrm { f } ( x ) = 5 + \mathrm { e } ^ { 2 x - 3 } , \quad x \in \mathbb { R } .$$
  1. State the range of f .
  2. Find an expression for \(\mathrm { f } ^ { - 1 } ( x )\) and state its domain.
  3. Solve the equation \(\mathrm { f } ( x ) = 7\).
  4. Find an equation for the tangent to the curve \(y = \mathrm { f } ( x )\) at the point where \(y = 7\).
Question 6
View details
6. (a) Prove the identity $$2 \cot 2 x + \tan x \equiv \cot x , \quad x \neq \frac { n } { 2 } \pi , \quad n \in \mathbb { Z } .$$ (b) Solve, for \(0 \leq x < \pi\), the equation $$2 \cot 2 x + \tan x = \operatorname { cosec } ^ { 2 } x - 7 ,$$ giving your answers to 2 decimal places.
Question 7
View details
7. The functions \(f\) and \(g\) are defined by $$\begin{aligned} & \mathrm { f } : x \rightarrow | 2 x - 5 | , \quad x \in \mathbb { R } ,
& \mathrm {~g} : x \rightarrow \ln ( x + 3 ) , \quad x \in \mathbb { R } , \quad x > - 3 \end{aligned}$$
  1. State the range of f .
  2. Evaluate fg(-2).
  3. Solve the equation $$\operatorname { fg } ( x ) = 3$$ giving your answers in exact form.
  4. Show that the equation $$\mathrm { f } ( x ) = \mathrm { g } ( x )$$ has a root, \(\alpha\), in the interval [3,4].
  5. Use the iteration formula $$x _ { n + 1 } = \frac { 1 } { 2 } \left[ 5 + \ln \left( x _ { n } + 3 \right) \right]$$ with \(x _ { 0 } = 3\), to find \(x _ { 1 } , x _ { 2 } , x _ { 3 }\) and \(x _ { 4 }\), giving your answers to 4 significant figures.
  6. Show that your answer for \(x _ { 4 }\) is the value of \(\alpha\) correct to 4 significant figures.